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1 Introduction

Imperfect shadow maps (ISMs) [Ritschel et al. 2008; Ritschel et al. 2011] are well established for approximating visibilities of many lights
(e.g., virtual point lights (VPLs)). However, this shadow mapping is often the main bottleneck for real-time applications. For acceleration of
ISMs, a simple culling technique using a compute shader is very effective.

1.1 Imperfect Shadow Maps

ISM is a single-pass technique to render an arbitrary number of shadow maps. This is done by approximating the scene geometry using point
cloud (Fig. 1). To make ISMs, these points are rendered instead of polygons by using splatting. For many lights, a point is projected onto
only a single shadow map. Therefore, the computation time of this technique is approximately proportional to the total number of the points,
and thus independent from the number of lights and primitives. To render these shadow maps in a single pass, low-resolution shadow maps
(e.g., 642) are tiled in a large single render target as shown in Fig. 2.

Figure 1: Point cloud approximation of a scene geometry
for ISMs. A point is splatted onto a single shadow map.

Figure 2: Render target of ISMs (642

resolution × 1024).

2 Point Cloud Culling

2.1 Invisible Points

For point splatting, front- or back-face culling can be used, similar to general shadow mapping. Therefore, approximately half of the points
can be invisible to lights (Fig. 3). In addition, points under the surface of a VPL are also invisible. These redundant points should be culled
before rendering ISMs.
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Figure 3: Visible points (green) and invisible points (gray) for a VPL. Front-face culling is used for ISMs
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2.2 Culling via Compute Shader

Program 1 is the compute shader of culling for VPLs. The system value id is the point index. This compute pass sim-
ply outputs only visible points using AppendStructuredBuffer. In order to splat these outputted visible points onto shadow maps,
ID3D11DeviceContext::DrawInstancedIndirect is used. This API needs a buffer in device memory for input arguments (i.e., the number of
visible points). To update this buffer, the hidden counter value of pointIdBuffer is copied using ID3D11DeviceContext::CopyStructureCount.
For splatting using a geometry shader, the counter value is copied to the buffer for arguments directly. However, for vertex shader splatting
[Wu 2012], the input argument must be the product of the number of points (i.e., counter value) and number of vertices of the splat. Therefore,
a single thread compute pass shown in Program 2 is additionally required for this case.

Program 1: Culling invisible points for ISMs.

A p p e n d S t r u c t u r e d B u f f e r< u i n t > p o i n t I d B u f f e r : r e g i s t e r ( u0 ) ;

[ numthreads ( WORKGROUP SIZE, 1 , 1 ) ]
vo id C u l l I s m P o i n t s C S ( c o n s t u i n t i d : SV Dispa tchThreadID )
{

c o n s t f l o a t 3 pos = G e t P o i n t P o s i t i o n ( i d ) ;
c o n s t f l o a t 3 normal = GetPo in tNormal ( i d ) ;
c o n s t u i n t v p l I n d e x = GetVpl Index ( i d ) ;
c o n s t f l o a t 3 v p lPo s = G e t V p l P o s i t i o n ( v p l I n d e x ) ;
c o n s t f l o a t 3 vplNormal = GetVplNormal ( v p l I n d e x ) ;

/ / f r o n t−f a c e c u l l i n g
i f ( d o t ( vplNormal , normal ) > 0 . 0 && d o t ( vplNormal , pos − vp lPos ) > 0 . 0 ) {

p o i n t I d B u f f e r . Append ( i d ) ;
}

}

Program 2: Update kernel of the input argument of DrawInstancedIndirect for vertex shader splatting.

RWBuffer< u i n t > b u f f e r F o r A r g s : r e g i s t e r ( u0 ) ;
Buf f e r< u i n t > p o i n t C o u n t : r e g i s t e r ( t 0 ) ;

[ numthreads ( 1 , 1 , 1 ) ]
vo id C a l c u l a t e I n p u t A r g s C S ( )
{

b u f f e r F o r A r g s [ 0 ] = p o i n t C o u n t [ 0 ] ∗ SPLAT VERTEX NUM ;
}

3 Results and Conclusion

Here, we employ adaptive ISMs (AISMs) [Ritschel et al. 2011] and virtual spherical Gaussian lights (VSGLs, an improved version of VPLs)
[Tokuyoshi 2014] as an experimental example. Front-face culling and vertex shader splatting is used for AISMs. Table 1 is the computation
time of AISMs for the experimental scene shown in Fig. 4. By culling, the splatting pass, which is the main bottleneck, is more than twice as
fast. The overhead of this culling is about 9% of the splatting pass.

Although the complexity of Program 1 is the same as splatting, the overhead of this culling is small in practice. For other applications,
splatting and particle rendering can be also accelerated by culling invisible points in a similar fashion.

References

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow maps for efficient
computation of indirect illumination. ACM Trans. Graph. 27, 5, 129:1–129:8.

RITSCHEL, T., EISEMANN, E., HA, I., KIM, J. D., AND SEIDEL, H.-P. 2011. Making imperfect shadow maps view-adaptive: High-quality
global illumination in large dynamic scenes. Comput. Graph. Forum 30, 8, 2258–2269.

TOKUYOSHI, Y. 2014. Virtual spherical gaussian lights for real-time glossy indirect illumination. In SIGGRAPH ASIA ’14 Tech. Briefs.

WU, O. 2012. Enhancing graphics in unreal engine 3 titles using new code submissions. In GDC’12.

c©2014 Square Enix Co., Ltd. All rights reserved.



Figure 4: Experimental scene (264k triangles, polygon models are courtesy of R. W. Sumner, J. Popovic, and F. Meinl). The total rendering
time is 29 ms (1024 VSGLs, frame buffer resolution: 1920×1088, ISM resolution: 642, 8192 points for each ISM, GPU: Radeon

TM
HD 6990).

Table 1: Computation times of AISMs (ms).
w/o culling with culling

Points Generation 4.21 4.21
Culling N/A 0.67
Splatting 16.73 7.50
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