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1 Spherical Gaussians
A spherical Gaussian (SG) is a type of spherical function and is
represented by using a Gaussian function g as follows:

G(ω, ξ, λ) = g

(
∥ω − ξ∥, 1

λ

)
= eλ((ω·ξ)−1),

where ξ is the lobe axis, and λ is the lobe sharpness. ξ and 1
λ

correspond to the mean and variance for the Gaussian function, re-
spectively. The integral of an SG is given by

A(λ) =

∫
S2

G(ω, ξ, λ)dω =
2π

λ

(
1− e−2λ

)
.

In this poster, a normalized SG G(ω,ξ,λ)
A(λ)

is used for representing
the distribution of reflection lobes.

1.1 SG Approximation of reflection lobes
Diffuse lobes. For the Lambert bidirectional reflectance distri-
bution function (BRDF) ρd, the diffuse lobe can be approximated
with an SG taking energy conservation into account as follows:

ρd(x,ω
′,ω)⟨ω,n⟩ = Rd

⟨ω,n⟩
π

≈ Rd
G(ω,n, λd)

A(λd)
, (1)

where ω′ is the incoming direction, n is the surface normal at the
position x, ⟨ω,n⟩ = max(ω · n, 0), Rd is the diffuse reflectance,
and λd ≈ 2 which is obtained by using the least square method.

Specular lobes. For the microfacet BRDF ρs, the specular lobe
is fitted with a single SG by using Wang et al. [2009]’s analytical
approximation. The BRDF is separated into two factors: the normal
distribution function (NDF) without a normalization factor D(ωh)
and the rest of the factors M(ω) as follows:

ρs(x,ω
′,ω)⟨ω,n⟩ = M(ω)D(ωh),

where ωh is the half-way vector of ω′ and ω. Bell-shaped NDFs
(e.g., Phong [Blinn 1977], Beckmann [1963] and GGX [Walter
et al. 2007] NDFs) can be approximated with an SG as

D(ωh) ≈ G(ωh,n, λh).

For Beckmann or GGX NDFs, λh = 2
α2 where α is the roughness

parameter. Using spherical warping, this can be approximated with
a function of ω as

G(ωh,n, λh) ≈ G(ω, ξs, λs),

where ξs is the reflection vector given by ξs = 2(ω′ · n)n − ω′,
and λs = λh

4|ξs·n| . Hence, the specular lobe is approximated with
the following equation:

ρs(x,ω
′,ω)⟨ω,n⟩ ≈ M(ω)G(ω, ξs, λs).
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Since microfacet BRDFs almost preserve energy for highly glossy
surfaces, this poster moreover approximates the specular lobe using
a normalized SG as follows:

ρs(x,ω
′,ω)⟨ω,n⟩ ≈ Rs

G(ω, ξs, λs)

A(λs)
, (2)

where Rs is the specular reflectance. Anisotropic SGs (ASGs) [Xu
et al. 2013] are also usable in the same manner.

2 Virtual Spherical Gaussian Lights
This poster approximates a set of virtual point lights (VPLs) [Keller
1997] with a virtual spherical Gaussian light (VSGL) [Tokuyoshi
2015]. For a VSGL, the total radiant intensity and positional dis-
tribution of VPLs are respectively represented using an SG and
isotropic Gaussian distribution. This representation can be com-
puted using a simple summation operation.

2.1 Radiant intensity
The radiant intensity of the ith VPL is given as

Ii(ω) = Φiρ(xi,ω
′
i,ω)⟨ω,ni⟩,

where Φi is the power of the ith photon emitted from the light
source, ω′

i is the incoming direction of the photon, and ni is the sur-
face normal at the VPL position xi, and ρ(xi,ω

′
i,ω) is the BRDF.

This poster first divides this BRDF into diffuse and specular com-
ponents (i.e., ρd and ρs). Then, the total radiant intensity of a set
of VPLs is approximated with a single SG for each component by
using Toksvig [2005]’s filtering. Therefore, two VSGLs are used
for diffuse-specular surfaces. For ease of explanation, this section
hereafter describes only a single BRDF component. The total radi-
ant intensity of a set of VPLs S is represented as

Iv(ω) =
∑
i∈S

Ii(ω) ≈ cvG (ω, ξv, λv) .

To compute cv , ξv and λv efficiently, each reflection lobe is ap-
proximated using Eq. 1 or Eq. 2 as follows:

Iv(ω) ≈
∑
i∈S

ΦiRi
G (ω, ξi, λi)

A(λi)

=

(∑
i∈S

ΦiRi

) ∑
i∈S ΦiRi

G(ω,ξi,λi)

A(λi)∑
i∈S ΦiRi

,

where Ri is the reflectance, and ξi and λi are the axis and sharpness
of the reflection lobe at the ith VPL. Then, the weighted average of
normalized SGs weighted by ΦiRi is approximated with a single
SG as ∑

i∈S ΦiRi
G(ω,ξi,λi)

A(λi)∑
i∈S ΦiRi

≈ G (ω, ξv, λv)

A(λv)
.

Using Toksvig’s filtering, the ith normalized SG is first approxi-
mately converted into its averaged direction as ξ̄i =

λi
λi+1

ξi. Next,
the weighted average of the directions is computed by

ξ̄v =

∑
i∈S ΦiRiξ̄i∑
i∈S ΦiRi

.
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Finally, the filtered SG is obtained from the weighted average di-
rection as ξv = ξ̄v

∥ξ̄v∥
, λv = ∥ξ̄v∥

1−∥ξ̄v∥
. The coefficient cv is given by

cv =
∑

i∈S ΦiRi

A(λv)
.

2.2 Positional distribution
In this poster, the positional distribution of VPLs is represented with
a single isotropic Gaussian distribution for a VSGL. The weighted
mean of VPL positions is computed by

µv =

∑
i∈S ΦiRixi∑
i∈S ΦiRi

The positional variance is also calculated using weighted average
as

σ2
v =

∑
i∈S ΦiRi∥xi∥2∑

i∈S ΦiRi
− ∥µv∥

2 .

Assuming VPLs are distributed on a planar surface, the emitted ra-
diance of a VSGL is represented as follows:

Le(x,ω) ≈ Iv(ω)

2πσ2
v|ω · n|g

(
∥x− µv∥, σ

2
v

)
, (3)

where n is the surface normal which will be eliminated in shading
(§3.1). Hence, a VSGL is generated by calculating

∑
i∈S ΦiRi,∑

i∈S ΦiRiξ̄i,
∑

i∈S ΦiRix, and
∑

i∈S ΦiRi∥x∥2. In this poster,
the set of VPLs S is all the pixels of a reflective shadow map
[Dachsbacher and Stamminger 2005]. Therefore, for each VSGL,
the summed values are calculated by using a parallel summation
algorithm on the GPU.

3 Shading
For each shading point xp with view direction ωp, the reflected
radiance is calculated using the rendering equation [Kajiya 1986]
defined by

L(xp,ωp) =

∫
S2

Lin(xp,ω)ρ(xp,ωp,ω)⟨ω,np⟩dω, (4)

where Lin(xp,ω) is the incoming radiance, and np is the surface
normal at the shading point. This poster approximates the incoming
radiance using SGs for the analytical approximation of the render-
ing integral [Wang et al. 2009; Xu et al. 2013].

3.1 Incoming radiance
Using Eq. 3, the approximated incoming radiance is given by

Lin(xp,ω) = Le(x,−ω)

≈ Iv(−ω)

2πσ2
v|ω · n|g

(
∥x− µv∥, σ

2
v

)
, (5)

where ω =
x−xp

∥x−xp∥ . x is assumed to be on the planar surface
defined by the normal n and position µv . Here we introduce vir-
tual spherical light (VSL) [Hašan et al. 2009] like approximation
to eliminate n. In the context of VSLs, a directionally independent
shape representation can be used for virtual lights by multiplying
|ω·n|. For our case, it is divided by |ω·n|, and thus n is eliminated.
This is reasonable because the actual surface normal distribution is
taken into account by the radiant intensity Iv(−ω). Therefore, Eq.
5 is approximated with the following equation:

Lin(xp,ω) ≈ Iv(−ω)

2πσ2
v

g
(
∥xr − µv∥, σ

2
v

)
,

where ω =
xr−xp

∥xr−xp∥ , and xr is the position on the sphere defined
by the center xp and radius ∥µr − xp∥. This is derived assuming a

small σv or large radius, but it does not produce noticeable artifacts
in practice for a large σv and small radius. The Gaussian term can
be rewritten into an SG as

g
(
∥xr − µv∥, σ

2
v

)
= G(ω, ξµ, λσ), (6)

where ξµ =
µv−xp

∥µv−xp∥ , and λσ =
∥µv−xp∥2

σ2
v

. This SG represents
the spherical region of the VSGL viewed from xp. Our formulation
is simpler than Xu et al. [2014]’s virtual area light approximation
using an SG. Using Eq. 6, the incoming radiance is approximated
with the product of two SGs which yields an SG as follows:

Lin(xp,ω) ≈ cv
2πσ2

v

G (ω,−ξv, λv)G(ω, ξµ, λσ)

= cinG (ω, ξin, λin) , (7)

where ξin =
λσξµ−λvξv

∥λσξµ−λvξv∥
, λin = ∥λσξµ − λvξv∥, and cin =

cv
2πσ2

v
eλin−λv−λσ .

3.2 Shading via product integrals of SGs
Since the reflection lobe ρ(xp,ωp,ω)⟨ω,np⟩ can be approximated
using SGs and ASGs, Eq. 4 can be calculated using the analytical
product integral.

Diffuse reflection. Using Eq. 1 and Eq. 7, the rendering integral
of the diffuse component is calculated using the analytical product
integral of two SGs. For simplicity, this poster uses Iwasaki et al.
[2012]’s approximate product integral as follows:

Ld(xp,ωp) =

∫
S2

Lin(xp,ω)ρd(xp,ωp,ω)⟨ω,np⟩dω

≈ cinRd

A(λd)

∫
S2

G(ω, ξin, λin)G(ω,np, λd)dω

≈
2πcinRdG

(
ξin,np,

λinλd
λin+λd

)
(λin + λd)A(λd)

.

In addition, this poster assumes A(λd) ≈ π based on Iwasaki et
al.’s approximation. Therefore, diffuse reflection is inexpensively
calculated using the following equation:

Ld(xp,ωp) ≈
2cinRdG

(
ξin,np,

λinλd
λin+λd

)
λin + λd

.

Unlike previous papers [Xu et al. 2014; Tokuyoshi 2015], this
poster represents the cosine factor at the shading point ⟨ω,np⟩ with
G(ω,np, λd) for diffuse surfaces. For a few VSGLs, this SG ap-
proximation produces smoother illumination appearance as shown
in Fig 1.

Specular reflection. While SGs are used for VSGLs, this poster
employs an ASG to approximate a specular lobe at a shading point.
This is because a specular lobe can be anisotropic even if it is an
isotropic BRDF model, especially for shallow grazing angles. For
simplicity, ASGs are used only for the first bounce which is more
visually important than the second bounce. In addition, the prod-
uct integral of an ASG and SG [Xu et al. 2013] has a reasonable
computation cost. An ASG is defined as

Ǵ(ω, ξx, ξy, ξz, ηx, ηy) = ⟨ω, ξz⟩e
−ηx(ω·ξx)2−ηy(ω·ξy)

2

,

where ξx, ξy, ξz are orthonormal vectors, and ηx, ηy are the band-
width parameters. Since a specular lobe is approximated with an



Figure 1: Shading using SG approximation for diffuse surfaces.
Left: the cosine factor at the shading point is pulled out of the
rendering integral [Xu et al. 2014; Tokuyoshi 2015]. Right: SG
approximation is used for the cosine factor at the shading point.
For a few VSGLs, smoother illumination appearance is produced
by approximating the cosine factor with an SG.

ASG as ρs(xp,ωp,ω)⟨ω,np⟩ ≈ M(ω)Ǵ(ω, ξx, ξy, ξz, ηx, ηy),
the rendering integral is calculated as

Ls(xp,ωp) =

∫
S2

Lin(xp,ω)ρs(xp,ωp,ω)⟨ω,np⟩dω

≈ cinM(ξm)

∫
S2

G(ω, ξin, λin)Ǵ
(
ω, ξx, ξy, ξz, ηx, ηy

)
dω

≈
πcinM(ξm)Ǵ

(
ξin, ξx, ξy, ξz,

ηxν
ηx+ν

,
ηyν

ηy+ν

)
√

(ηx + ν)(ηy + ν)
,

where ν = λin
2

, and ξm = λinξin+λsξz
∥λinξin+λsξz∥

is the lobe axis of the
integrand.
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