
Pacific Graphics 2015
N. J. Mitra, J. Stam, and K. Xu
(Guest Editors)

Volume 34 (2015), Number 7

Virtual Spherical Gaussian Lights for Real-time Glossy
Indirect Illumination (Supplemental Material)

Yusuke Tokuyoshi†

Square Enix Co., Ltd., Japan

Appendix A: Spherical Gaussian Approximation for
Reflection Lobes

Diffuse lobes. For the Lambert BRDF ρd , the diffuse lobe
can be approximated with a spherical Gaussian taking en-
ergy conservation into account as follows:

ρd(x,ωωω
′,ωωω)〈ωωω,n〉= Rd

〈ωωω,n〉
π
≈ Rd

G(ωωω,n,λd)

A(λd)
, (A.1)

where 〈ωωω,n〉 = max(ωωω · n,0), Rd is the diffuse reflectance,
and λd ≈ 2 which is obtained by using the least square
method.

Specular lobes. For the microfacet BRDF ρs, the specu-
lar lobe is fitted with a single spherical Gaussian by using
Wang’s analytical approximation [WRG∗09]. The BRDF is
separated into two factors: the normal distribution function
without a normalization factor D(ωωωh) and the rest of the fac-
tors M(ωωω) as follows:

ρs(x,ωωω′,ωωω)〈ωωω,n〉= M(ωωω)D(ωωωh),

where ωωωh is the half-way vector of ωωω
′ and ωωω. Bell-shaped

normal distribution functions (e.g., Phong [Bli77], Beck-
mann [BS63] and GGX distributions) can be approximated
with a spherical Gaussian as

D(ωωωh)≈ G(ωωωh,n,λh).

For Beckmann or GGX normal distribution functions, λh =
2

α2 where α is the roughness parameter. Using spherical
warping, this can be approximated with a function of ωωω as

G(ωωωh,n,λh)≈ G(ωωω,ξξξs,λs),

where ξξξs is the reflection vector given by ξξξs = 2(ωωω′ ·n)n−
ωωω
′, and λs =

λh
4|ωωω′·n| . Hence, the specular lobe is approxi-

mated with the following equation:

ρs(x,ωωω′,ωωω)〈ωωω,n〉 ≈M(ωωω)G(ωωω,ξξξs,λs).

Since microfacet BRDFs almost preserve energy for highly
glossy surfaces, this paper moreover approximates the spec-
ular lobe using a normalized spherical Gaussian as follows:

ρs(x,ωωω′,ωωω)〈ωωω,n〉 ≈ Rs
G(ωωω,ξξξs,λs)

A(λs)
,

where Rs is the specular reflectance. anisotroic spherical
Gaussians are also usable in the same manner [XSD∗13].

Appendix B: Shading via Product Integrals of Spherical
Gaussians

Diffuse reflection. Using Eq. 5 of the main document and
Eq. A.1, the rendering integral of the diffuse component can
be calculated using the analytical product integral of two
spherical Gaussians. However, Eq. A.1 can produce light
leak errors. Unlike the secondary bounce represented by vir-
tual spherical Gaussian lights (VSGLs), light leaks are no-
ticeable at the first bounce which is more visually important.
Therefore, the cosine factor is assumed to be a constant and
pulled out of the integral [WRG∗09] as follows:

Ld(xp,ωωωp) =
∫

S2
Lin(xp,ωωω)ρd(xp,ωωωp,ωωω)〈ωωω,np〉dωωω

≈ cinRd
π

A(λin)〈ξξξin,np〉.

In addition, when λin is not small, A(λin) ≈ 2π

λin
can be as-

sumed [IDN12]. Therefore, diffuse reflection is inexpen-
sively calculated using the following equation:

Ld(xp,ωωωp)≈
2cinRd

λin
〈ξξξin,np〉 .

Specular reflection. While spherical Gaussians are used for
VSGLs, this paper employs an anisotropic spherical Gaus-
sian to approximate a specular lobe at a shading point. This
is because a specular lobe can be anisotropic even if it is
an isotropic BRDF model, especially for shallow grazing
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angles. For simplicity, anisotropic spherical Gaussians are
used only for the first bounce which is more visually im-
portant than the second bounce. In addition, the product
integral of a spherical Gaussian and anisotropic spherical
Gaussian [XSD∗13] has a reasonable computation cost. An
anisotropic spherical Gaussian is defined as

Ǵ(ωωω,ξξξx,ξξξy,ξξξz,ηx,ηy) = 〈ωωω,ξξξz〉e
−ηx(ωωω·ξξξx)

2−ηy(ωωω·ξξξy)
2
,

where ξξξx,ξξξy,ξξξz are orthonormal vectors, and ηx,ηy
are the bandwidth parameters. Since a specular lobe
is approximated with an anisotropic spherical Gaussian
as ρs(xp,ωωωp,ωωω)〈ωωω,np〉 ≈ M(ωωω)Ǵ(ωωω,ξξξx,ξξξy,ξξξz,ηx,ηy), the
rendering integral is calculated as

Ls(xp,ωωωp) =
∫

S2
Lin(xp,ωωω)ρs(xp,ωωωp,ωωω)〈ωωω,np〉dωωω

≈
πcinM(ξξξin)Ǵ

(
ξξξin,ξξξx,ξξξy,ξξξz,

ηxν

ηx+ν
,

ηyν

ηy+ν

)
√

(ηx +ν)(ηy +ν)
,

where ν = λin
2 .
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