
© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Improved Geometric
Specular Antialiasing
YUSUKE TOKUYOSHI (SQUARE ENIX CO., LTD.)
ANTON S. KAPLANYAN (FACEBOOK REALITY LABS)

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Aliasing of Specular Highlights

with a bloom posteffect (1920×1080 pixels)

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Geometric Specular AA [Kaplanyan16]

 Simple & fast 
 NDF filtering in pixel shader
 Just increase the roughness parameter of the microfacet BRDF [Cook82]

 Limitations:
 Suppress only the specular aliasing
 Require high-quality tangent frames
 Numerical error for grazing angles

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Filtering Error (Non-Axis-Aligned Filtering)

[Kaplanyan16] with our modification

GGX microfacet BRDF (roughness: 0.01) [Walter07]

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Filtering Error (Biased Axis-Aligned Filtering)

[Kaplanyan16] with our modification

GGX microfacet BRDF (roughness: 0.01) [Walter07]

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Our Contributions

 Error analysis of geometric specular AA
 Efficient filter kernel taking the error into account

 Simpler than the previous method

 Simplification for deferred rendering
 12 lines of code → 4 lines of code

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

NDF Filtering

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Specular AA

Filtering in screen space

Antialiasing=
filtering

highlight

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Specular AA

Filtering in screen space

Antialiasing

Filtering in world space
=

filtering

highlight

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Specular AA

Filtering in screen space

Filtering in halfvector-slope space

Antialiasing

Filtering in world space
=

filtering

highlight

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

NDF Filtering in Pixel Shader

 Estimate the derivatives of halfvector slopes
 Rough estimation using the difference between contiguous pixels (i.e., ddx/ddy)

 Compute a 2×2 covariance matrix (i.e., Gaussian kernel) using the derivatives
 Filter the NDF using this Gaussian kernel by assuming the Beckmann NDF [1963]

 Add the covariance matrix into the NDF variance (i.e., surface roughness)

𝛥𝛥𝐡𝐡𝑢𝑢
||

𝛥𝛥𝐡𝐡𝑣𝑣
||

Derivative estimation Pixel footprint in slope space

Gaussian kernel

Convolution in slope space

NDF

Gaussian kernel𝛥𝛥𝐡𝐡𝑢𝑢
||

slope space slope space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Estimation Error of Derivatives

 Artifacts for grazing angles
 Noticeable especially for the GGX NDF

 Due to a heavier tail than the Beckmann NDF

GGX NDF

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Estimation Error for Grazing Angles

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Estimation Error for Grazing Angles

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Estimation Error for Grazing Angles

normal

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Estimation Error for Grazing Angles

error caused by ddx/ddy
normal

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Estimation Error for Grazing Angles

slope space

𝜃𝜃

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

𝜃𝜃

Estimation Error for Grazing Angles

slope space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

𝜃𝜃

Estimation Error for Grazing Angles

slope space

error in slope space ∝ 1
cos3𝜃𝜃

Jacobian from directions to slopes

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

𝜃𝜃

Estimation Error for Grazing Angles

slope space

Actually, NDF filtering is unnecessary for grazing angles,
because they don’t produce highlights

NDF

highlight

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Our Improvement

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Our Filter Kernel

slope space

NDF
filter kernel

filter kernel

Higher-frequency kernel for a shallower halfvector angle

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Projection onto a Unit Disk

[Kaplanyan16] Ours
∆𝐡𝐡⊥

∆𝐡𝐡||

Shrink the kernel size by estimating derivatives in a projected space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Code of Derivative Estimation

float3 halfvector = normalize(viewDirection + lightDirection);
float3 halfvectorTS = mul(tangentFrame, halfvector);
float2 halfvector2D = halfvectorTS.xy / abs(halfvectorTS.z);
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Code of Derivative Estimation

float3 halfvector = normalize(viewDirection + lightDirection);
float3 halfvectorTS = mul(tangentFrame, halfvector);
float2 halfvector2D = halfvectorTS.xy / abs(halfvectorTS.z);
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);

Remove from the [Kaplanyan16]’s implementation

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Code of Derivative Estimation

float3 halfvector = normalize(viewDirection + lightDirection);
float3 halfvectorTS = mul(tangentFrame, halfvector);
float2 halfvector2D = halfvectorTS.xy / abs(halfvectorTS.z);
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);

Remove from the [Kaplanyan16]’s implementation

Simple 

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Results (Non-Axis-Aligned Filtering)

[Kaplanyan16] Ours

GGX microfacet BRDF (roughness: 0.01)

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Results

with a bloom posteffect (1920×1080 pixels)

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Comparison with the Reference (1024 spp)

with a bloom posteffect (1920×1080 pixels)

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Simplification for Deferred Rendering

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Approximation for Deferred Rendering

pixel footprint

distant distant

constant in world space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Approximation for Deferred Rendering

pixel footprint

In tangent space, the change of halfvector is affected
only by the change of tangent frames

distant distant

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Approximation for Deferred Rendering

pixel footprint

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Previous Approximation

 Average normal in the shading quad instead of the halfvector
 Isotropic filtering for a compact G-buffer (i.e., scalar roughness)
 Conservative (i.e., overfiltering)

 Kernel size = Maximum width of the axis-aligned filter kernel

𝛥𝛥�𝐧𝐧𝑣𝑣
||

𝛥𝛥�𝐧𝐧𝑢𝑢
||

Axis-aligned kernel in slope space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Our Approach

 Based on the average eigenvalue of the 2×2 covariance matrix
 Eliminate the computation of average normal in tangent space
 Balance overfiltering and underfiltering

float3 dndu = ddx(normal), dndv = ddy(normal);
float variance = SIGMA2 * (dot(dndu, dndu) + dot(dndv, dndv));
float kernelRoughness2 = min(variance, KAPPA);
float filteredRoughness2 = saturate(roughness2 + kernelRoughness2);

float2 neighboringDir = 0.5 - 2.0 * frac(pixelPosition * 0.5);
float3 deltaNormalX = ddx_fine(normal) * neighboringDir.x;
float3 deltaNormalY = ddy_fine(normal) * neighboringDir.y;
float3 avgNormal = normal + deltaNormalX + deltaNormalY;
float3 avgNormalTS = mul(tangentFrame, avgNormal);
float2 avgNormal2D = avgNormalTS.xy / abs(avgNormalTS.z);
float2 deltaU = ddx(avgNormal2D), deltaV = ddy(avgNormal2D);
float2 boundingRectangle = abs(deltaU) + abs(deltaV);
float maxWidth = max(boundingRectangle.x, boundingRectangle.y);
float variance = SIGMA2 * maxWidth * maxWidth;
float kernelRoughness2 = min(2.0 * variance, KAPPA);
float filteredRoughness2 = saturate(roughness2 + kernelRoughness2);

Previous code
Our code

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Kernel Size Using the Average Eigenvalue

𝛥𝛥�𝐧𝐧𝑢𝑢⊥
𝛥𝛥�𝐧𝐧𝑣𝑣⊥

Gaussian kernel
(non-axis-aligned)

Isotropic Gaussian kernel

𝜆𝜆min 𝜆𝜆max

𝜆𝜆min + 𝜆𝜆max
2

Pixel footprint in tangent space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Kernel Size Using the Average Eigenvalue

 Sum of eigenvalues is given by the trace of the covariance matrix
 Use only the norms of derivatives

𝛥𝛥�𝐧𝐧𝑢𝑢⊥

𝜆𝜆min + 𝜆𝜆max = 𝜎𝜎2 𝛥𝛥�𝐧𝐧𝑢𝑢⊥
2 + 𝛥𝛥�𝐧𝐧𝑣𝑣⊥

2

𝛥𝛥�𝐧𝐧𝑣𝑣⊥

Isotropic Gaussian kernel

𝜆𝜆min + 𝜆𝜆max
2

Pixel footprint in tangent space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Norms of Derivatives

 Replace by the norms of world-space derivatives
 Using the average normal of two contiguous pixels for each screen axis

 No need to compute the average normal in tangent space 

Derivative of world-space normalsDerivative of average normals
in tangent space

𝜃𝜃𝑢𝑢𝜃𝜃𝑢𝑢𝜃𝜃𝑢𝑢 𝜃𝜃𝑢𝑢
𝛥𝛥�𝐧𝐧𝑢𝑢⊥ = 𝛥𝛥𝐧𝐧𝑢𝑢

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Objects with Invalid Tangent Vectors

Tangent vectors Previous Ours

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Filtering Quality (RMSE)
Max eigenvalue Sum of eigenvalues Avg. eigenvaluePrevious

0.65

0.44

0.41

0.60

0.43

0.39

0.61

0.43

0.40

0.53

0.38

0.33

Best

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Application to Forward Rendering

 NDF filtering is not a bottleneck when rendering a G-buffer
 However, normal-based filtering can also be desirable to use for

forward rendering
 Constant filtering cost for many lights
 Applicable to any real-time approximations
 E.g., area lights, IBL, and indirect illumination

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Performance (8K, Forward Rendering)

0

1.5

3

4.5

Sponza Bistro San Miguel

Previous Max eigenvalue Sum of eigenvalues Avg. eigenvalue(ms)

w/o AA
w/o AA

w/o AA

7680×4320 screen resolution, GPU: AMD RadeonTM RX Vega 56

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Limitations & Conclusions

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Limitations

 Inherited from [Kaplanayan16]
 Geometric discontinuities
 Bias introduced by approximating the pixel footprint
 Bias introduced by approximating the GGX NDF with the

Beckmann NDF
 Require high-quality tangent frames for anisotropic filtering

 For our isotropic filtering, this limitation is alleviated to high-quality
shading normals

 Underfiltering for grazing halfvectors
 Usually not a problem
 Aliasing is small for grazing halfvectors

Tangent

Previous

Ours

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Conclusions

 Estimation error of slope derivatives is increased for grazing halfvectors
 Reduced the filtering error using a higher-frequency kernel for a

shallower halfvector
 Slope projected halfvector (orthographic projection)
 Simpler than the previous method

 Optimized normal-based isotropic NDF filtering (4 lines of code)

[Kaplanyan16] Ours

slope space

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Application

 Already implemented in Unity HDRP
 Based on our technical report [Tokuyoshi17]

 Isotropic normal-based filtering
 Source code: https://github.com/Unity-Technologies/ScriptableRenderPipeline

https://github.com/Unity-Technologies/ScriptableRenderPipeline

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

References

 P. Beckmann and A. Spizzichino. 1963. The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon Press.

 R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (1982), 7–24.

 A. S. Kaplanyan, S. Hill, A. Patney, and A. Lefohn. 2016. Filtering Distributions of Normals for Shading Antialiasing. In HPG ’16. 151–162.

 Y. Tokuyoshi. 2017. Error Reduction and Simplification for Shading Anti-aliasing. Technical Report.

 B.Walter, S. Marschner, H. Li, and K. Torrance. 2007. Microfacet Models for Refraction through Rough Surfaces. In EGSR ’07. 195–206.

“Unity” is a trademark or registered trademark of Unity Technologies ApS.

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

Bonus

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

HLSL Code (Non-Axis-Aligned Filtering)

float3 halfvector = normalize(viewDirection + lightDirection);
float3 halfvectorTS = mul(tangentFrame, halfvector);
float2 halfvector2D = halfvectorTS.xy;
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);
float2x2 delta = { deltaU, deltaV };
float2x2 covarianceMatrix = SIGMA2 * mul(transpose(delta), delta);
float2x2 roughnessMatrix = { roughness2.x, 0.0, 0.0, roughness2.y };
float2x2 filteredRoughnessMatrix = roughnessMatrix + 2.0 * covarianceMatrix;

roughness2: squared surface roughness (i.e., 𝛼𝛼𝑥𝑥2, 𝛼𝛼𝑦𝑦2 in the paper)
SIGMA2: screen-space variance (i.e., 𝜎𝜎2 = 0.25 in the paper)

© 2019 SQUARE ENIX CO., LTD. and Facebook Reality Labs. All Rights Reserved.

HLSL Code (Biased Axis-Aligned Filtering)

float3 halfvector = normalize(viewDirection + lightDirection);
float3 halfvectorTS = mul(tangentFrame, halfvector);
float2 halfvector2D = halfvectorTS.xy;
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);
float2 boundingRectangle = abs(deltaU) + abs(deltaV);
float2 variance = SIGMA2 * (boundingRectangle * boundingRectangle);
float2 kernelRoughness2 = min(2.0 * variance, KAPPA);
float2 filteredRoughness2 = saturate(roughness2 + kernelRoughness2);

roughness2: squared surface roughness (i.e., 𝛼𝛼𝑥𝑥2, 𝛼𝛼𝑦𝑦2 in the paper)
SIGMA2: screen-space variance (i.e., 𝜎𝜎2 = 0.25 in the paper)
KAPPA: clamping threshold (i.e., 𝜅𝜅 = 0.18 in the paper)

	Improved Geometric Specular Antialiasing
	Aliasing of Specular Highlights
	Geometric Specular AA [Kaplanyan16]
	Filtering Error (Non-Axis-Aligned Filtering)
	Filtering Error (Biased Axis-Aligned Filtering)
	Our Contributions
	NDF Filtering
	Specular AA
	Specular AA
	Specular AA
	NDF Filtering in Pixel Shader
	Estimation Error of Derivatives
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Estimation Error for Grazing Angles
	Our Improvement
	Our Filter Kernel
	Projection onto a Unit Disk
	Code of Derivative Estimation
	Code of Derivative Estimation
	Code of Derivative Estimation
	Results (Non-Axis-Aligned Filtering)
	Results
	Comparison with the Reference (1024 spp)
	Simplification for Deferred Rendering
	Approximation for Deferred Rendering
	Approximation for Deferred Rendering
	Approximation for Deferred Rendering
	Previous Approximation
	Our Approach
	Kernel Size Using the Average Eigenvalue
	Kernel Size Using the Average Eigenvalue
	Norms of Derivatives
	Objects with Invalid Tangent Vectors
	Filtering Quality (RMSE)
	Application to Forward Rendering
	Performance (8K, Forward Rendering)
	Limitations & Conclusions
	Limitations
	Conclusions
	Application
	References
	Bonus
	HLSL Code (Non-Axis-Aligned Filtering)
	HLSL Code (Biased Axis-Aligned Filtering)

