STOCHASTIC LIGHT CULLING

YUSUKE TOKUYOSHI (SQUARE ENIX CO., LTD.)
TAKAHIRO HARADA (ADVANCED MICRO DEVICES, INC.)

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserve:

LIGHT CULLING

PREVIOUS WORK

= Restrict the influence range of light Ehi s

V

= Perform shading only inside that range | e
—Splatting [Dachsbacher06] ' -

—Tile-based culling [0lsson11; Harada12] : :
Do not perform shading Perform shading

—Clustered shading [oisson12]

Clamping ranges ﬁ | || Reference ﬁ

=

. . = : ‘
Darkening bias accumulates as — - -— -

the number of lights increases p
- -

Indirect illumination using 65536 virtual point lights (VPLs) [Keller97]

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

INDIRECT ILLUMINATION (65536 VIRTUAL POINT LIGHTS)

VIDEO

Resolution: 1920x1152, GPU: AMD Radeon™ R9 290X

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

OUR METHOD

Shading
with Russian roulette

Light range determination
based on Russian roulette

Any culling method

= Random influence ranges based on Russian roulette (arvos0]
—Can sample distant point lights with low probability

= Unbiased sampling
= Variance is produced instead of bias

= Unlike the darkening bias, this variance does not accumulate as lights increase ©

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RUSSIAN ROULETTE

= Kill each light stochastically
= Probability: proportional to the fall-off function — == ——
= Divide the energy of a surviving light by the probability

1

Fall-off: f () = =

Distance from a light l

probability: p(l)

User-specified parameter

to control variance

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserve:

STOCHASTIC FALL-OFF FUNCTION

Clamping Stochastic

1 fQ 1
F) = {f(l) =7 (I<r) £ = {m = max (a,l—z) p) > 8

0 (otherwise) 0 (otherwise)

r

light range light range

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

STOCHASTIC FALL-OFF FUNCTION

Clamping Stochastic

1 fQ 1
F) = {f(l) =7 (I<r) £ = {m = max (a,l—z) p) > 8

0 (otherwise) 0 (otherwise)

r

light range light range

STOCHASTIC FALL-OFF FUNCTION

Clamping

f) = {f

r

light range

1
O=x

0

(I<r)

(otherwise)

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserve:

Stochastic

l 1
) = {% = max (a,l—z) @@ >$)

0 (otherwise)

5T

light range

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RANDOM INFLUENCE RANGE

= Different ranges between shading points ®
= For culling, we have to use an identical range for each light

= Solution: Single random number for each light
—Unbiased coherent sampling ©
—Variance is visible as banding artifacts instead of noise

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

ERROR BOUND-BASED LIGHT RANGE

= Tradeoff between variance and computation time

= Employ a user-specified error bound to avoid oversampling
—Lower sampling probability (i.e., smaller light range) for smaller radiant intensity

= For VPLs, the number of intersecting lights is sublinear ©

Shading time for the same error bound
ms

45 — Clamping light range

= Qurs
30

22528 44032 65536

EXAMPLE IMPLEMENTATION
OF
REAL-TIME INDIRECT ILLUMINATION

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

CLASSIC ALGORITHM

PREVIOUS WORK

= (1) Generate 65536 VPLs by rendering a reflective shadow map [pachsbacheros

= (2) Shade using 8x8 interleaved sampling of VPLS (segoviaos]
—Different VPL subsets between neighboring pixels (i.e., 1024 VPLs per plxel)

—Reorder pixels into 8 X8 subregions to reduce the divergence of threads
—Variance is visible as noise

= (3) Denoise in post processing (cross bilateral filtering)

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

APPLY STOCHASTIC LIGHT CULLING

= Combination of interleaved sampling and stochastic light culling

= Tiled deferred shading [andersson11] for each subregion
—8X8 interleaved sampling for 65536 VPLs -> 1024 VPLs per subregion
—Then, stochastic light culling is performed for each 1024 VPLs

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

BEFORE DENOISING

e e [

Bl

Shading time: 2.87 ms

L e
E

Shading time: 44.4 m Shading time: 2.87 ms

65536 VPLs, Resolution: 1920%1152, Error bound: 0.0005, GPU: AMD Radeon™ R9 290X

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

AFTER DENOISING, TEXTURING, AND ADDING DIRECT ILLUMINATION

’i/ /| | Lightculk i/ clamping ranges
q ‘ "'
o _'.. ey : { P ',"' s f : s '," e
fie B e T s -
Total rendering time: 48.5 ms Total rendering time : 7.0 ms Total rendering time : 7.0 ms
RMSE: 0.0017 RMSE: 0.0026 RMSE: 0.0377

65536 VPLs, Resolution: 1920%1152, Error bound: 0.0005, GPU: AMD Radeon™ R9 290X

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserve:

RESULTS

EQUAL-TIME COMPARISON

1024 VPLs (shading time: 1.19 ms)

Il V| g
I 1
| |
K
5 % {.y f
Stochastic light culling Light culling with clamping ranges

Resolution: 1920x1152, Error bound: 0.0005, GPU: AMD Radeon™ R9 290X

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

EQUAL-TIME COMPARISON

4096 VPLs (shading time
I/ VI »

|
[
i A - |
Stochastic light culling Light culling with clamping ranges

Resolution: 1920x1152, Error bound: 0.0005, GPU: AMD Radeon™ R9 290X

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

EQUAL-TIME COMPARISON

16384 VPLs (shading time

Stochastic light culling Light culling with clamping ranges

Resolution: 1920x1152, Error bound: 0.0005, GPU: AMD Radeon™ R9 290X

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

EQUAL-TIME COMPARISON

65536 VPLs (shading time

Stochastic light culling Light culling with clamping ranges

Resolution: 1920x1152, Error bound: 0.0005, GPU: AMD Radeon™ R9 290X

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

VARIETY OF LIGHT TYPES

= We have other light types in path tracing

= Most of them are area lights
—What should we do for area lights?

Point © Spot © IES © Area ®

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

AREA LIGHT BOUND

R

= Need to compute light bound
" How?? : % ‘:

———

Point light

Area light

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

AREA LIGHT BOUND

= Need to compute light bound
= Area light == Union of point lights

= Sweep sphere on the edge
—Overlapping test to this geometry ishot simple-.

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

AREA LIGHT BOUND

= Need to compute light bound
= Area light == Union of point lights

= Compute conservative bound

e —-——-—

—Represent it as a sphere with radius R+r
—Where maximum distto the edges =R .
—Radius of a point light =r ,l\,——-— -- -

! \
5 . B i /! \
= Build Bounding Sphere H|er§i‘rchy~
,// \\ ¥ II \\\
/ S ’ \\
I,) \
] \
| 1
1
‘\ A ;o i ’l
\\ \ /’ \\ /’ / ;
AN S "N / N Conservative bound)
\\ \\// >/ // N 7/

~ -~ —

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

MULTIPLE IMPORTANCE SAMPLING (MIS)

= Probability is well defined
= Easy to apply MIS [veachos]

—Explicit connection + implicit connection
= At implicit connection, light sampling probability is
—[pdf of sampling the light vertex] x [SLC (Russian Roulette) probability]

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

CONVERGE TO REFERENCE

Reference Stochastic Light Culling Clamping

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

CONVERGENCE SPEED COMPARISON (EQUAL TIME ON THE CPU)

Uniform sampling ®® Stochastic Light Culling ©©

55,000 triangle lights, after 30s

CHALLENGES IN GPU PATH TRACING

= Stochastic light culling works very well on the CPU

= Porting algorithm as it is causes performance issues on the GPU

1. Work item (thread) divergence
—Execute shading & visibility test on a leaf visit leads to a large divergence

2. Memory footprint
—Many Wils are running in parallel

—Even the storage of hits is small for a WI, preparing it for all WIs isn’t realistic
—[# of lights] x [# of WIs]

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

IMPROVING TREE TRAVERSAL & SHADING

WORK ITEM DIVERGENCE

(nodeldx)
= BVH traversal (
Node node = getNode(nodeldx);
t (hit(node, ray))
= When we hit a leaf node Loy —
= Shadow ray Ca Stl ng : Ray shadowRay = createRay(node, ray);
5 (lintersect(shadowRay))
—Shading (i
pixel += shade(node, ray);
- ACCU mu Iatlo n }nodeIdx = node.m_next;
. . }
= Not all WI hits leaf at the same time :
y nodeldx = node.m_child;
—Divergence)

nodeldx = node.m_next;
}
}

Expensive computation deep in branches => Very bad

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

IMPROVING TREE TRAVERSAL & SHADING

MEMORY FOOTPRINT

(nodeldx)

= Don’t shade in the tree traversal (

Node node = getNode(nodeldx);
(-hit(node, ray))

= Store light index in a buffer, process g
(shade) them later B e AL
= Divergence in the tree traversal is P
resolved, but ; nodeld = node m.child
—Don’t know how many lights overlaps :
—Storage of hit index can be huge I nodeldx = node.m next;
—Don’t know the upper bound :

(i=0; i<nHits; i++)
{
Node node = getNode(hitList[i]);
Ray shadowRay = createRay(node, ray);
(lintersect(shadowRay))

{

pixel += shade(node, ray);
1
}

Isolate expensive computation
Loop over nHits, which varies a lot => Bad

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

IMPROVING TREE TRAVERSAL & SHADING

RESERVOIR SAMPLING

while(nodeldx)

= Reservoir sampling [vitter8s] (
H H g NOd? node = getNode(nodeldx);
—Select at most k items without storing e

if(isLeaf(node)-)

all the candidates (
resevoirSampling(hitList, nodeldx);

_Only need Storage for k items } nodeldx = node.m_next;

else

{
nodeldx = node.m_child;
}
}

else
{
nodeldx = node.m_next;
}
}

for(i=0; i<resevoirMax; i++)
{
if(nHits <=i)
continue;
Node node = getNode(hitList[i]);
Ray shadowRay = createRay(node, ray);
if(lintersect(shadowRay))
{
pixel += shade(node, ray);

}
} .
Loop at most reservoirMax (constant) => Good ©

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

Uniform Sampling (RSME:0.0749) Stochastic Light Culling (RSME:0.0464)

5,000 triangle lights, after 2min

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

RESULTS

Uniform Sampling (RSME:0.0355) Stochastic Light Culling (RSME:0.0203)

*omp ,‘ *omy

+

-
i
ja !‘l

59,000 triangle lights, after 2min

CLOSING

* |ntroduced Stochastic Light Culling
—Can cull lights without bias (darkening)

= Presented two applications

—Real-time Gl using VPLs
—VPLs + interleaved sampling

—Interactive Gl using path tracing
—Extension to area lights
—GPU optimization

2017 SQUARE ENIX CO., LTD. and Advanced Micro

Devices Inc. All Rights Reserved.

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

QUESTIONS?

Yusuke Tokuyoshi and Takahiro Harada, Stochastic Light Culling, JCGT, vol. 5, no. 1, 35-60, 2016

2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

REFERENCES

= ARVO, J., AND KIRK, D. 1990. Particle transport and image synthesis. SIGGRAPH Comput. Graph. 24, 4, 63—66.

= ANDERSSON, J. 2011. Directx 11 rendering in Battlefield 3. In GDC’11.

= DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective shadow maps. In 13D ‘05, 203-231.

= DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting indirect illumination. In 13D ‘06, 93—-100.

= HARADA, T., MCKEE, J., AND YANG, J. C. 2012. Forward+: Bringing deferred lighting to the next level. In Eurographics ‘12 Short Papers.
= KELLER, A. 1997. Instant radiosity. In Proc. SIGGRAPH’97, 49-56.

= OLSSON, O., AND ASSARSSON, U. 2011. Tiled shading. J. Graph. GPU, and Game Tools, 235-251.

= QLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Clustered deferred and forward shading. In HPG’12, 87-96.

= SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PE ROCHE, B. 2006. Non-interleaved deferred shading of interleaved sample patterns. In GH’06, 53—60.
= VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In SIGGRAPH ‘95, 419-428.
= VITTER, J. S. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1, 37-57.

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

STOCHASTIC LIGHT CULLING FOR POINT LIGHTS

DIRECT ILLUMINATION

Path Tracing (Base)

HitInfo hit = scene.intersect(from, to);
if('hit.hasHit())
continue;

float4 hp = from + (to — from) * hit.m_f;

for(int il=0; ilKnLightSamples; il++)
{

const Samplelnfo& | = Is[ill;

float g = geomTerm(hp, hitm_ns, L.m_x, .m_n);

if('scene.intersect(hp, .m_x).hasHit())

{

float4 f = scene.brdfEvaluate(hitm_ns, m);

dst +=f * Lm_le * g / |.m_pdfArea;
}
}

Path Tracing + SLC

HitInfo hit = scene:intersect(from, to);
if(hit.hasHit())
continue;

float4 hp = from + (to — from) * hit.m_f;

for(int il=0; ilKnLightSamples; il++)
{
const Samplelnfo& | = Is[il];
const float d2 = 12(hp — l.m_x);
if(SleImpl:radius2(I.m_le, ALPHA, xi[il]) < d2)

continue;

float g = geomTerm(hp, hitm_ns, L.m_x, .m_n);
if('scene.intersect(hp, .m_x).hasHit())

{

float4 f = scene.brdfEvaluate(hitm_ns, m);

float rrPdf = SlcImpl:computeRrPdf(hp, |, ALPHA);

dst +=f * I.m_le * g / (Lm_pdfArea * rrPdf);
}
}

© 2017 SQUARE ENIX CO., LTD. and Advanced Micro Devices Inc. All Rights Reserved.

STOCHASTIC LIGHT CULLING CODE

class Slclmpl
{
public:
static
float computeRt(const float4& le, float alpha)
{
return sqrtf(dot3F4(float4(g !), le) * (1.5/(*alpha)));
}

static
float computeRrPdf(const float4& vtx, const float4& Ivtx, const float4& le, float alpha)
{
float d2 = dot3F4(vtx—Ivtx, vtx—Ivtx);
float r_t = computeRt(le, alpha);
if(d2 > rtkrt)
return r_tkr t / d2;

return
}
static
float radius2(float r_t, float xi)
{
return (rtxrt / (1.f—xi));
}

	スライド番号 1
	Light Culling
	Stochastic Light Culling
	Indirect illumination (65536 virtual point lights)
	Our Method
	Russian Roulette
	Stochastic Fall-off Function
	Stochastic Fall-off Function
	Stochastic Fall-off Function
	Random Influence range
	Error bound-based light range
	Example Implementation�of�Real-time Indirect Illumination
	Classic Algorithm
	Apply Stochastic Light Culling
	Results
	Results
	Results
	Results
	Results
	Results
	Stochastic Light Culling for �Progressive Path Tracing
	Variety of light types
	area light bound
	area light bound
	area light bound
	Multiple importance sampling (MIS)
	Results
	Results
	Stochastic light culling �on the GPU
	Challenges in GPU Path Tracing
	Improving tree traversal & shading
	Improving tree traversal & shading
	Improving tree traversal & shading
	Results
	Results
	Closing
	Questions?
	References
	Stochastic light culling for point lights
	Stochastic light culling code

