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1 Introduction

The shading anti-aliasing technique [Kaplanyan et al. 2016] is a
simple solution for specular aliasing. This report improves the
quality and performance of this technique without increasing the
complexity of the shader code. The shading anti-aliasing technique
filters a normal distribution function (NDF, i.e., distribution of mi-
crofacet normals) in the slope domain. However, for real-time ren-
dering, this approach can produce noticeable artifacts because of an
estimation error of derivatives (e.g., error of ddx/ddy instructions in
HLSL). For forward rendering, this estimation error is increased
significantly by projecting a halfvector into slope space (Fig. 1).
To reduce the error, this report introduces an adaptive kernel band-
width which takes the angle of the halfvector into account. In ad-
dition, we also simplify the calculation of an isotropic filter kernel
for deferred rendering by using the proposed kernel bandwidth. Our
implementation is simpler than the original method, therefore it is
more suitable for time-sensitive applications.

Our contributions are as follows:

• This report clarifies that a derivative estimation error is in-
creased in slope space for shading anti-aliasing (§3.1).

• To alleviate the above problem, we modify the kernel band-
width taking the angle of a halfvector into account for forward
rendering (§3.2).

• We present a simple roughness calculation for deferred ren-
dering based on the proposed kernel bandwidth (§4).

2 Shading Anti-Aliasing

The microfacet BRDF model [Cook and Torrance 1982] is defined
as

f(i,o) =
G2(i,o)D(h)F (h · o)

4|i · n||o · n| , (1)

where i and o are incoming and outgoing directions, h = i+o
‖i+o‖

is the halfvector, n is the surface normal, G2(i,o) is the masking-
shadowing function, and F (h · o) is the Fresnel factor, and D(h)
is the NDF. For shading anti-aliasing, the Beckmann NDF [Beck-
mann and Spizzichino 1963] is assumed and then it is filtered using
an anisotropic Gaussian kernel in the slope domain. The kernel
bandwidth is given as a covariance matrix Σ calculated for each
pixel as follows:

Σ = σ2

[
∆h
‖
u

∆h
‖
v

]T [
∆h
‖
u

∆h
‖
v

]
, (2)

where σ2 = 0.25 is the variance of the filter kernel in screen space,
and ∆h

‖
u and ∆h

‖
v are the derivatives of the halfvector in slope

space for each pixel. Since the Beckmann NDF is a Gaussian distri-
bution in slope space, this filtering is a convolution of two Gaussian
distributions. Hence, the filtered NDF is also an anisotropic Beck-
mann NDF which uses the following 2×2 matrix as a roughness
parameter:

A =

[
α2
x 0

0 α2
y

]
+ 2Σ, (3)
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Figure 1: Estimation error of derivatives of the halfvector h is in-
creased in slope space for shallow h. This error can be larger than
the magnitude of the slope of h, and thus inappropriate filtering is
performed.

where αx and αy are the original Beckmann roughness parameters
for the tangent axis and bitangent axis. In this report, we describe
the above matrix as a roughness matrix which is two times of a co-
variance matrix. This roughness matrix can also be used approxi-
mately for the GGX NDF [Trowbridge and Reitz 1975; Walter et al.
2007]. Although microfacet BRDFs are usually formulated using
axis-aligned anisotropy, these BRDFs can be generalized using this
roughness matrix for non-axis-aligned anisotropy [Heitz 2014]. For
the detail of the generalized GGX microfacet BRDF used in this re-
port, please refer to Appendix A.

3 Error Reduction for Shading Anti-aliasing

3.1 Error of derivative estimation

Shallow view directions. For real-time computer graphics APIs
(e.g., DirectX R© and OpenGL R©), derivatives are roughly estimated
in a pixel shader using intrinsic functions (e.g., ddx/ddy instructions
in HLSL). These intrinsics compute the difference between values
of two contiguous pixels in the 2×2 shading pixel quad. How-
ever, this rough estimation produces a numerical error (Fig. 2a)
especially for a shallow grazing angle of the view direction o. To
suppress artifacts caused by this error, Kaplanyan et al. [2016] pro-
posed a biased axis-aligned rectangular filtering technique. They
also clamped the bandwidth of their rectangular kernel. However,
artifacts can still be noticeable for shallow grazing angles as shown
in Fig. 3a.

Shallow halfvectors. In this report, we show that the above es-
timation error is intensely increased by projecting the halfvector h
into slope space. This increase of the error is represented using the
Jacobian matrix of the projection as follows:[

ε
‖
x

ε
‖
y

]
= J◦→‖

[
ε◦x
ε◦y

]
, (4)

where ε‖x and ε‖x are the errors in slope space. ε◦x is the error on the
great circle passing through the halfvector h and normal n. ε◦y is
the error on the great circle passing through the halfvector h and
n×h
‖n×h‖ . J◦→‖ is the Jacobian matrix of the transformation from
spherical space to slope space given by:

J◦→‖ = − 1

h2
z

√
1− h2

z

[
hx −hyhz
hy hxhz

]
, (5)

where [hx, hy, hz] is the halfvector h in tangent space (for the
derivation, please refer to Appendix B). The determinant of this
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(a) Kaplanyan et al. 2016 (b) Ours

Figure 2: Non-axis-aligned filtering using covariance matrix Σ for the GGX NDF.

(a) Kaplanyan et al. 2016 (b) Ours

Figure 3: Biased axis-aligned rectangular filtering for the GGX NDF.

Listing 1: Our derivative estimation for forward rendering (HLSL). The red code is removed from Kaplanyan et al.’s implementation.
f l o a t 3 h a l f v e c t o r = n o r m a l i z e ( v i e w D i r e c t i o n + l i g h t D i r e c t i o n ) ;
f l o a t 3 h a l f v e c t o r T a n g e n t S p a c e = mul ( t angen tF rame , h a l f v e c t o r ) ;
f l o a t 2 h a l f v e c t o r P r o j e c t e d = h a l f v e c t o r T a n g e n t S p a c e . xy / abs ( h a l f v e c t o r T a n g e n t S p a c e . z ) ;
f l o a t 2 d e l t a U = ddx ( h a l f v e c t o r P r o j e c t e d ) ;
f l o a t 2 d e l t a V = ddy ( h a l f v e c t o r P r o j e c t e d ) ;
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Figure 4: Since a shallow halfvector angle does not produce high-
lights (i.e., noticeable aliasing), we employ a higher-frequency filter
kernel for a shallower halfvector angle.

Jacobian matrix is

det
(
J◦→‖

)
=

1

h3
z

≥ 1. (6)

The magnitude of the error in slope space can be larger than the
magnitude of the slope of the halfvector for small hz . Hence, sig-
nificant artifacts are induced for shallow halfvectors due to inap-
propriate filtering. These artifacts are noticeable especially for the
GGX NDF, because the GGX distribution has a stronger tail than
the Beckmann distribution.

3.2 Our approach

Artifacts are produced when halfvectors are shallow grazing an-
gles. However, NDF filtering is often unnecessary for such shallow
halfvectors because they do not produce highlights. Therefore, we
reduce the kernel bandwidth according to the angle of the halfvector
(Fig. 4). This is easily implemented by estimating the derivatives
in a different space instead of slope space. For this derivative es-
timation, this report employs the orthographic projection onto the
hx-hy-plane (Fig. 5). Let ∆h⊥u and ∆h⊥v be the derivatives of
[hx, hy]: then our filter kernel is given by the following covariance
matrix:

Σ = σ2

[
∆h⊥u
∆h⊥v

]T [
∆h⊥u
∆h⊥v

]
. (7)

As shown in Listing 1, this orthographic projection is simpler than
the projection into slope space. The Jacobian matrix of this projec-
tion is given by

J◦→⊥ =
1√

1− h2
z

[
hxhz −hy
hyhz hx

]
. (8)

The determinant of this Jacobian matrix is

det (J◦→⊥) = hz ≤ 1. (9)

Thus, this projection reduces the error for shallow halfvectors. Fig.
2b and Fig. 3b shows the rendering results using our kernel band-
width. Our method significantly reduces artifacts without increas-
ing the complexity of the shader code.

4 Simplification for Deferred Rendering

NDF filtering for deferred rendering. For deferred rendering,
the use of halfvectors is not practical, because the inexpensive
derivative estimation is usable only in the pixel shader. In addition,
light sources are unknown for the G-buffer rendering pass. There-
fore, an average normal n̄ within the shading quad is used instead

∆h‖

(a) Previous derivatives

∆h⊥

(b) Our derivatives

Figure 5: While the original method (a) estimates the derivatives
in slope space, our method (b) estimates the derivatives on the pro-
jected unit disk to reduce the filter kernel bandwidth.

of the halfvector h for derivative estimation by assuming the worst
case for a distant light source and distant eye position. For a com-
pact G-buffer, since a single scalar roughness parameter is often
required, Kaplanyan et al. [2016] used the maximum roughness of
their rectangular filter kernel. In this section, we discuss other op-
tions for such single scalar roughness. Using our kernel bandwidth
presented in 3.2, this report derives a simple isotropic filter kernel.

Constraint for isotropic NDF filtering. The bandwidth of the
isotropic kernel must be wider than the original anisotropic kernel
(represented with the covariance matrix Σ) to completely remove
specular aliasing. The maximum roughness of Kaplanyan et al.’s
rectangular kernel satisfies this constraint. On the other hand, this
kernel bandwidth should be small to reduce overfiltering. Within
this constraint and objective, the optimal kernel bandwidth is ob-
tained as the maximum eigenvalue of the covariance matrix Σ. Let
λ be the maximum eigenvalue: then the squared roughness of the
filtered isotropic NDF is given by

ᾱ2 = α2 + min (2λ, δmax) , (10)

where α is the original roughness parameter for the isotropic NDF,
and δmax = 0.18 is the clamping threshold used in the Kaplanyan
[2016]’s rectangular filtering to suppress the estimation error of
derivatives. Although this eigenvalue λ can be calculated analyti-
cally, it is slightly more expensive than the rectangular kernel-based
approach. This report proposes another option which satisfies the
above constraint.

Our isotropic filter kennel bandwidth. We employ the sum of
squared norms of derivatives which is equal or greater than the max-
imum eigenvalue as follows:

λ ≤ σ2

(∥∥∥∆n̄⊥u

∥∥∥2

+
∥∥∥∆n̄⊥v

∥∥∥2
)
, (11)

where ∆n̄⊥u and ∆n̄⊥v are derivatives on the average normal n̄ on
the projected unit disk. While Kaplanyan et al. [2016] computed n̄
using the average within the shading quad, in this report we employ
the average of two contiguous pixels for each screen axis. For this
case,

∥∥∆n̄⊥u
∥∥ and

∥∥∆n̄⊥v
∥∥ are respectively equal to ‖∆nu‖ and

‖∆nv‖ which are lengths of derivatives of world-space normals as
shown in Fig. 6. Thus we obtain the following equation:

σ2

(∥∥∥∆n̄⊥u

∥∥∥2

+
∥∥∥∆n̄⊥v

∥∥∥2
)

= σ2 (‖∆nu‖2 + ‖∆nv‖2
)
. (12)

Hence, our roughness parameter for the filtered isotropic NDF is
yielded as

ᾱ2 = α2 + min
(
2σ2 (‖∆nu‖2 + ‖∆nv‖2

)
, δmax

)
. (13)
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Figure 6: If the average normal n̄ is computed using two normals
n and n′ of contiguous pixels, the length of the estimated derivative
of the average normals in tangent space (a) is equal to the distance
between n and n′ (i.e., length of the derivative of world-space nor-
mals) (b).

Since this calculation uses world-space normals, the computation
of the average normal and transformation into tangent space are un-
necessary. Our implementation (Listing 2) is simpler than comput-
ing the rectangular kernel-based maximum roughness (Listing 3).
In addition, since this roughness calculation is independent from
tangent vectors, it performs robustly even if objects do not have
valid tangent vectors. The rendering results and visualization of
the filtered roughness parameter are shown in Fig. 7 and Fig. 8,
respectively. For deferred rendering, there are no large visual dif-
ferences between our method and Kaplanyan et al. [2016], while
the proposed implementation is simpler.

5 Conclusions

In this report we have presented an error reduction technique for
NDF filtering. The rough derivative estimation produces a signif-
icant numerical error, since the error is increased due to the pro-
jection into slope space. To suppress this increase of the error,
this report employs a higher-frequency filter kernel for a shallower
halfvector angle. This is implemented by estimating derivatives on
the projected unit disk instead of slope space. In addition, this re-
port also presents a simpler isotropic NDF filtering technique for
deferred rendering based on this derivative estimation. Hence, our
method does not only reduce the error, but also simplifies the shader
code for shading anti-aliasing.
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A Non-Axis-Aligned Anisotropic BRDF

Masking-shadowing function. The Smith [1967] masking func-
tion is defined as G1(o,h) = χ+(o·h)

1+Λ(o)
, where χ+ (o · h) is the

Heaviside function: 1 if o · h > 0 otherwise 0. Λ(o) is a function
which depends on the NDF model. The height-correlated masking-
shadowing function [Heitz 2014] is given as

G2(i,o) =
χ+ (i · h)χ+ (o · h)

1 + Λ(i) + Λ(o)
. (14)

In this report, Λ(o) for the anisotropic GGX NDF model is de-
scribed in the later paragraphs.

Axis-aligned anisotropic GGX BRDF. The axis-aligned
anisotropic GGX NDF is defined as follows:

D(h) =
χ+ (hz)

παxαy
(
h2
x
α2
x

+
h2
y

α2
y

+ h2
z

)2 . (15)

For this NDF, the masking-shadowing function is obtained using
the following function:

Λ(o) = −0.5 +

√
α2
xo2
x + α2

yo2
y + o2

z

2|oz|
, (16)

where [ox, oy, oz] is the outgoing direction o in tangent space.

Non-axis-aligned anisotropic GGX BRDF. For shading anti-
aliasing, we use the 2×2 roughness matrix A instead of αx and αy .
The anisotropic NDF can be generalized using this matrix [Heitz
2014] as follows:

D(h) =
χ+ (hz)

π
√

det(A) ([hx, hy]A−1[hx, hy]T + h2
z)

2
. (17)

For this NDF, the masking-shadowing function is obtained using
the following function:

Λ(o) = −0.5 +

√
[ox, oy]A[ox, oy]T + o2

z

2|oz|
. (18)

For this microsurface model, the slope of a microsurface is
stretched in the directions of the eigenvectors of the roughness ma-
trix A. The stretching scale for each eigenvector is the reciprocal
square root of the eigenvalue of A.

B Derivation of the Jacobian Matrix

Letψx be an angle on the great circle passing through the halfvector
h and normal n, and ψy be an angle on the great circle passing
through the halfvector h and n×h

‖n×h‖ : then its Cartesian coordinate
is given as

mx = cosψy sinψx,

my = sinψy, (19)
mz = cosψy cosψx.

Thus, the Jacobian matrix of the transformation from [ψx, ψy] to
[mx,my] at ψx = 0 and ψy = 0 is yielded as

J◦→⊥m =

[
∂mx
∂ψx

∂mx
∂ψy

∂my

∂ψx

∂my

∂ψy

]

=

[
cosψy cosψx − sinψy sinψx

0 cosψy

]
=

[
1 0
0 1

]
. (20)

The tangent-space halfvector can be represented using a polar co-
ordinate system as follows:

hx = sin θ cosφ,

hy = sin θ sinφ, (21)
hz = cos θ.
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Listing 2: Our roughness calculation for deferred rendering (HLSL).
f l o a t 3 d e l t a U = ddx ( normal ) ;
f l o a t 3 d e l t a V = ddy ( normal ) ;
f l o a t v a r i a n c e = SCREEN SPACE VARIANCE ∗ ( d o t ( de l t aU , d e l t a U ) + d o t ( de l t aV , d e l t a V ) ) ;
f l o a t k e r n e l S q u a r e d R o u g h n e s s = min ( 2 . 0 ∗ v a r i a n c e , THRESHOLD ) ;
f l o a t squa redRoughness = s a t u r a t e ( r o u g h n e s s ∗ r o u g h n e s s + k e r n e l S q u a r e d R o u g h n e s s ) ;

Listing 3: Original roughness calculation using the maximum width of the rectangular kernel for deferred rendering (HLSL).
f l o a t 2 n e i g h b o r i n g D i r = 0 . 5 − 2 . 0 ∗ f r a c ( p i x e l P o s i t i o n ∗ 0 . 5 ) ;
f l o a t 3 de l taNormalX = d d x f i n e ( normal ) ∗ n e i g h b o r i n g D i r . x ;
f l o a t 3 de l taNormalY = d d y f i n e ( normal ) ∗ n e i g h b o r i n g D i r . y ;
f l o a t 3 avgNormal = normal + de l taNormalX + del taNormalY ;
f l o a t 3 avgNormalTangentSpace = mul ( t angen tF rame , avgNormal ) ;
f l o a t 2 a v g N o r m a l P r o j e c t e d = avgNormalTangentSpace . xy / abs ( avgNormalTangentSpace . z ) ;
f l o a t 2 d e l t a U = ddx ( a v g N o r m a l P r o j e c t e d ) ;
f l o a t 2 d e l t a V = ddy ( a v g N o r m a l P r o j e c t e d ) ;
f l o a t 2 b o u n d i n g R e c t a n g l e = abs ( d e l t a U ) + abs ( d e l t a V ) ;
f l o a t maxWidth = max ( b o u n d i n g R e c t a n g l e . x , b o u n d i n g R e c t a n g l e . y ) ;
f l o a t v a r i a n c e = SCREEN SPACE VARIANCE ∗ maxWidth ∗ maxWidth ;
f l o a t k e r n e l S q u a r e d R o u g h n e s s = min ( 2 . 0 ∗ v a r i a n c e , THRESHOLD ) ;
f l o a t squa redRoughness = s a t u r a t e ( r o u g h n e s s ∗ r o u g h n e s s + k e r n e l S q u a r e d R o u g h n e s s ) ;

(a) w/o NDF filtering (b) Kaplanyan et al. 2016 (c) Ours (Eq. (13)) (d) Maximum eigenvalue (Eq. (10))

Figure 7: Isotropic NDF filtering for deferred rendering.

(a) Kaplanyan et al. 2016 (b) Ours (Eq. (13)) (c) ((a) − (b))× 4. Red: positive. Green: negative.

Figure 8: Visualization of roughness parameter ᾱ of the filtered isotropic NDF for deferred rendering.
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Using this θ and this φ, the rotation from the local-space halfvector
to tangent-space halfvector is given byhxhy

hz

 =

cos θ cosφ − sinφ sin θ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

mx

my

mz

 , (22)

where [mx,my,mz] = [0, 0, 1] (i.e., ψx = 0 and ψy = 0). There-
fore, the Jacobian matrix of the orthographic projection is derived
as

J◦→⊥ = J⊥m→⊥J◦→⊥m

=

[
∂hx
∂mx

∂hx
∂my

∂hy
∂my

∂hy
∂my

][
1 0
0 1

]
=

[
cos θ cosφ − sinφ
cos θ sinφ cosφ

]
=

1√
1− h2

z

[
hxhz −hy
hyhz hx

]
. (23)

The slope of the halfvector is given as

h‖x = − hx√
1− h2

x − h2
y

,

h‖y = − hy√
1− h2

x − h2
y

. (24)

Therefore, the Jacobian matrix of the transformation from the pro-
jected unit disk to slope space is yielded as follows:

J⊥→‖ =

 ∂h‖x∂hx

∂h
‖
x

∂hy

∂h
‖
y

∂hx

∂h
‖
y

∂hy

 = − 1

h3
z

[
1− h2

y hxhy
hxhy 1− h2

x

]
. (25)

Hence, the Jacobian matrix of the transformation from spherical
space to slope space is obtained as

J◦→‖ = J⊥→‖J◦→⊥ = − 1

h2
z

√
1− h2

z

[
hx −hyhz
hy hxhz

]
. (26)
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