Hierarchical Russian Roulette for Vertex Connections

YUSUKE TOKUYOSHI (SQUARE ENIX CO., LTD.) TAKAHIRO HARADA (ADVANCED MICRO DEVICES, INC.)

Specular-Diffuse-<u>Glossy</u> Paths in BPT

- Connectable
- ► Inefficient for extremely glossy surfaces ⊗
- ► Need many samples ⊗

GGX roughness: 0.0001

Previous Work

Stochastic light culling for VPLs [Tokuyoshi16,17]

X SDG paths
X Uncorrelated variance
X Anisotropic BRDFs

Our method for offline BPT

Previous Work

Stochastic light culling for VPLs [Tokuyoshi16,17]

Our method for offline BPT

SDG paths
 Uncorrelated variance
 Anisotropic BRDFs

Light-subpath tracing pass

Store light vertices in a cache similar to virtual point lights [Keller97]

Eye-subpath tracing pass

Eye-subpath tracing pass

Eye-subpath tracing pass many millions

Eye-subpath tracing pass

Acceptance Range in World Space

Same shape for each eye vertex Different (random) size for each pair of eye and light vertices

© 2019 SQUARE ENIX CO., LTD. All Rights Reserved.

Acceptance Range in World Space

Same shape for each eye vertex Different (random) size for each pair of eye and light vertices

© 2019 SQUARE ENIX CO., LTD. All Rights Reserved.

Culling Using BVH

- Build a BVH for cached light vertices
- Hierarchical intersection tests between the range and each BVH node
- Ellipsoidal range is used for a simple intersection test

Stochastic Scattering Range

Approximated to make an ellipsoidal range

Range = $\sqrt{\frac{\text{Constant} \times \text{Scattering lobe}}{\text{Uniform random number} \in [0,1)}}$

Different for each pair of eye and light vertices

© 2019 SQUARE ENIX CO., LTD. All Rights Reserved.

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

largest range for 16 light vertices

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range =
$$\sqrt{\frac{\text{Constant} \times \text{Scattering lobe}}{\frac{\text{Minimum of uniform random numbers}}}$$

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range =
$$\sqrt{\frac{\text{Constant} \times \text{Scattering lobe}}{\frac{\text{Minimum}}{1000}}$$

Pregenerate and store in each node?
(Similar to lightcuts [Walter05] & stochastic light culling [Tokuyoshi16])

Random fUse the late

Pregeneration

Reference

Largest Correlation of variance &

Pregenerate and store in each node?

(Similar to lightcuts [Walter05] & stochastic light culling [Tokuyoshi16])

ion test

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range =
$$\sqrt{\frac{\text{Constant} \times \text{Scattering lobe}}{\frac{\text{Minimum of uniform random numbers}}{\frac{\text{Pregenerate and store in each node?}}{\frac{\text{Similar to lightcuts [Walter05] & stochastic light culling [Tokuyoshi16])}}}$$

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range =
$$\sqrt{\frac{\text{Constant} \times \text{Scattering lobe}}{\frac{\text{Minimum of uniform random numbers}}}$$

On-the-fly generation in BVH traversal

Generate a minimum random number larger than the parent at each orange node

- Generate a minimum random number larger than the parent at each orange node
- Transmit to single randomly selected child node (blue)

- Generate a minimum random number larger than the parent at each orange node
 - Transmit to single randomly selected child node (blue)
 - Orange and blue nodes are siblings

Semi-Stratified Sampling

Semi-Stratified Sampling

Overlaps of Strata at the Leaf Level

Stratified only in two sibling nodes

© 2019 SQUARE ENIX CO., LTD. All Rights Reserved.

Overlaps of Strata at the Leaf Level

Unbiased

Overlaps of Strata at the Leaf Level

Range for Anisotropic Microfacet BRDFs

Anisotropic Scattering Lobes

Scattering lobe is anisotropic for microfacet BRDFs

- Even if the NDF is isotropic
- Make a tight ellipsoidal range

Approximate the scattering lobe using a Squared Ellipsoidal Lobe

Probability = min
$$\left(\frac{\text{Constant} \times \text{Scattering lobe}}{\text{Distance}^2}, 1\right)$$

Range = $\sqrt{\frac{\text{Constant} \times \text{Scattering lobe}}{\text{Uniform random number}}}$

GGX-based Squared Ellipsoidal Lobe

GGX-based Squared Ellipsoidal Lobe

$$K\left(\boldsymbol{\omega}; \begin{bmatrix} \boldsymbol{\omega}_{x} \\ \boldsymbol{\omega}_{y} \\ \boldsymbol{\omega}_{z} \end{bmatrix}, \dot{\alpha}_{x}, \dot{\alpha}_{y} \right) = \frac{4\dot{\alpha}_{\max}^{4}}{(U - v_{z} + \dot{\alpha}_{\max}^{2}(U + v_{z}))^{2}}$$

$$\dot{\alpha}_{\max} = \max(\dot{\alpha}_x, \dot{\alpha}_y)$$
$$[v_x, v_y, v_z] = [\boldsymbol{\omega} \cdot \boldsymbol{\omega}_x, \boldsymbol{\omega} \cdot \boldsymbol{\omega}_y, \boldsymbol{\omega} \cdot \boldsymbol{\omega}_z]$$
$$U = \sqrt{\frac{\dot{\alpha}_{\max}^2}{\dot{\alpha}_x^2}} v_x^2 + \frac{\dot{\alpha}_{\max}^2}{\dot{\alpha}_y^2} v_y^2 + v_z^2$$

Approximately equal to an anisotropic GGX lobe for small roughness

$$\approx 4\pi\dot{\alpha}_{x}\dot{\alpha}_{y}D\left(\boldsymbol{\omega};\begin{bmatrix}\boldsymbol{\omega}_{x}\\\boldsymbol{\omega}_{y}\\\boldsymbol{\omega}_{z}\end{bmatrix},\frac{2\dot{\alpha}_{x}}{2},\frac{2\dot{\alpha}_{y}}{2}\right)$$

Analytical Lobe Approximation

Results 1600×1200 SCREEN RESOLUTION AMD RYZEN™ THREADRIPPER™ 2990WX PROCESSOR

Combination with PCBPT [Popov15] (15 min)

Caustics reflected on the mirror (GGX roughness: 0.0001)

Combination with PCBPT [Popov15] (15 min)

Caustics reflected on the mirror (GGX roughness: 0.0001)

Combination with VCM [Georgiev12, Hachisuka12] (60 min)

PCVCM: PCBPT + vertex merging

Convergence Speed

-- PCVCM (5 pixel initial radius)

- -PCVCM+HRR (5 pixel initial radius)
- -- PCVCM (0.6 pixel initial radius)
- -PCVCM+HRR (0.6 pixel initial radius)

Anisotropic BRDF (15 min)

Roughness: (0.0001, 0.01)

Related Work: Many-Light Methods

Pregenerated random numbers (require storage)

• Correlation can be reduced by sacrificing the memory usage [Walter06], but cannot be avoided completely

	MIS for SDG paths	Uncorrelated variance	Anisotropic BRDFs
Lightcuts [Walter05]	X	X	X
Stochastic light culling [Tokuyoshi16,17]	X	X	X
Many-light importance sampling [Estevez18]	×	_ ✓	×
Ours	\checkmark		\checkmark

On-the-fly random number generation (no storage)

Limitations

- Perfectly specular surfaces
- Fireflies can still occur on near singularities
 - Can be removed easily by VCM or using outlier rejection [Zirr18]
- Glossy-to-glossy interreflections
- Correlation of paths due to path reuse (similar to VCM)
 - ► Future work: correlation-aware MIS heuristics [Jendersie19]

Conclusions

- BVH-based acceleration for many Russian roulettes
- On-the-fly minimum random number generation in BVH traversal
- Efficient ellipsoidal range for anisotropic BRDFs
- Limited to glossy reflections, but efficient for extremely glossy reflections
 E.g., GGX roughness: 0.0001 (hard to distinguish from perfectly specular surfaces)

Thank you for your attention

Ę

References

- Arvo J. and Kirk D. 1990. Particle Transport and Image Synthesis. SIGGRAPH Comput. Graph. 24, 4, 63–66
- ▶ Estevez A. C. and Kulla C. 2018. Importance Sampling of Many Lights with Adaptive Tree Splitting. PACMCGIT 1, 2, 25:1–25:17
- Georgiev I., Křivánek J., Davidovič T., and Slusallek P. 2012. Light Transport Simulation with Vertex Connection and Merging. TOG 31, 6, 192:1–192:10
- ▶ Hachisuka T., Pantaleoni J., and Jensen H. W. 2012. A Path Space Extension for Robust Light Transport Simulation. TOG 31, 6 (2012), 191:1–191:10
- > Jendersie J. 2019. Variance Reduction via Footprint Estimation in the Presence of Path Reuse. In Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, 557–569
- ▶ Keller A. 1997. Instant Radiosity. In SIGGRAPH '97. 49–56
- Popov S., Ramamoorthi R., Durand F., and Drettakis G. 2015. Probabilistic Connections for Bidirectional Path Tracing. CGF 34, 4, 75–86
- ▶ Tokuyoshi Y. and Harada T. 2016. Stochastic Light Culling. JCGT. 5, 1, 35–60
- ▶ Tokuyoshi Y. and Harada T. 2017. Stochastic Light Culling for VPLs on GGX Microsurfaces. CGF 36, 4, 55–63
- Trowbridge T. S. and Reitz K. P. 1975. Average Irregularity Representation of a Rough Surface for Ray Reflection. J. Opt. Soc. Am. 65, 5 (1975), 531–536
- B. Walter, A. Arbree, K. Bala, and D. P. Greenberg. 2006. Multidimensional Lightcuts. TOG 25, 3, 1081–1088
- B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. TOG 24, 3, 1098–1107
- B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In EGSR '07. 195–206
- Xu K., Sun W.-L., Dong Z., Zhao D.-Y., Wu R.-D. and Hu S.-M. 2013. Anisotropic Spherical Gaussians. TOG 32, 6, 209:1–209:11

"Ryzen™" is a trademark or registered trademark of Advanced Micro Devices., Inc. "Threadripper™" is a trademark or registered trademark of Advanced Micro Devices., Inc.