Hierarchical Russian Roulette for Vertex Connections

YUSUKE TOKUYOSHI (SQUARE ENIX CO., LTD.)
TAKAHIRO HARADA (ADVANCED MICRO DEVICES, INC.)

Specular-Diffuse-Glossy Paths in BPT

- Connectable

Inefficient for extremely glossy surfaces Θ

- Need many samples ©

Previous Work

Stochastic light culling for VPLs
[Tokuyoshi16,17]

Our method for offline BPT

SDG paths

Uncorrelated variance Anisotropic BRDFs

Previous Work

Stochastic light culling for VPLs
[Tokuyoshil6,17]

Our method for offline BPT
\checkmark SDG paths
\checkmark Uncorrelated variance
\checkmark Anisotropic BRDFs

Overview of Our BPT

Light-subpath tracing pass

Store light vertices in a cache similar to virtual point lights [Keller97]

Overview of Our BPT

Eye-subpath łracing pass

Russian roulette [Avo90] for all the vertex connections (Probability \propto Scattering lobe / Distance ${ }^{2}$)

Overview of Our BPT

Eye-subpath tracing pass

Russian roulette [Avo90] for all the vertex connections (Probability \propto Scattering lobe / Distance ${ }^{2}$)

Overview of Our BPT

Eye-subpath tracing pass

Russian roulette [Avo90] for all the vertex connections (Probability \propto Scattering lobe / Distance ${ }^{2}$)

Overview of Our BPT

Eye-subpath tracing pass

Russian roulette [Avo90] for all the vertex connections (Probability \propto Scattering lobe / Distance ${ }^{2}$)

Acceptance Range in World Space

Same shape for each eye vertex
Different (random) size for each pair of eye and light vertices

Acceptance Range in World Space

Acceptance Range in World space

Same shape for each eye vertex
Different (random) size for each pair of eye and light vertices

Culling Using BVH

- Build a BVH for cached light vertices
- Hierarchical intersection tests between the range and each BVH node
- Ellipsoidal range is used for a simple intersection test

Stochastic Scattering Range

Different for each pair of eye and light vertices

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test
largest range for 16 light vertices

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range $=\sqrt{\frac{\text { Constant } \times \text { Scattering lobe }}{\text { Minimum of uniform random numbers }}}$

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range $=\sqrt{\frac{\text { Constant } \times \text { Scattering lobe }}{\text { Minimum of uniform random numbers }}}$

Pregenerate and store in each node?

(Similar to lightcuts [Walter05] \& stochastic light culling [Tokuyoshi16])

Pregeneration Reference
Larges Correlation of variance ${ }^{2}(3)$

Pregenerate and store in each node?
(Similar to liahtcuts [Walter051 \& stochastic liaht culling TTokuvoshi16])

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range $=\sqrt{\frac{\text { Constant } \times \text { Scattering lobe }}{\text { Minimum of uniform random numbers }}}$

(Similar to lightcuts [Walter05] \& stochastic light culling [Tokuyoshi16])

Range Size in BVH Traversal

- Random for each light vertex (i.e., leaf node)
- Use the largest size in each node for conservative intersection test

Largest range $=\sqrt{\frac{\text { Constant } \times \text { Scattering lobe }}{\text { Minimum of uniform random numbers }}}$
Different for each pair of eye vertex and BVH node

Top-down Minimum Random Number Generation

On-the-fly generation in BVH traversal

Top-down Minimum Random Number Generation

Semi-Stratified Sampling

Semi-Stratified Sampling

Overlaps of Strata at the Leaf Level

Stratified only in two sibling nodes

Overlaps of Strata at the Leaf Level

Overlaps of Strata at the Leaf Level

Range for Anisotropic Microfacet BRDFs

Anisotropic Scattering Lobes

- Scattering lobe is anisotropic for microfacet BRDFs
- Even if the NDF is isotropic
- Make a tight ellipsoidal range
- Approximate the scattering lobe using a Squared Ellipsoidal Lobe

$$
\begin{aligned}
& \text { Probability }=\min \left(\frac{\text { Constant } \times \text { Scattefing lobe }}{\text { Distanc }{ }^{2}}, 1\right) \\
& \text { Range }=\sqrt{\frac{\text { Constant } \times \text { Scattering lobe }}{\text { Inifan }}}
\end{aligned}
$$

GGX-based Squared Ellipsoidal Lobe

Isotropic GGX distribution

GGX-based Squared Ellipsoidal Lobe

$$
K\left(\boldsymbol{\omega} ;\left[\begin{array}{c}
\boldsymbol{\omega}_{x} \\
\boldsymbol{\omega}_{y} \\
\boldsymbol{\omega}_{z}
\end{array}\right], \dot{\alpha}_{x}, \dot{\alpha}_{y}\right)=\frac{4 \dot{\alpha}_{\max }^{4}}{\left(U-v_{z}+\dot{\alpha}_{\max }^{2}\left(U+v_{z}\right)\right)^{2}}
$$

$$
\begin{aligned}
& \dot{\alpha}_{\max }=\max \left(\dot{\alpha}_{x}, \dot{\alpha}_{y}\right) \\
& {\left[v_{x}, v_{y}, v_{z}\right]=\left[\boldsymbol{\omega} \cdot \boldsymbol{\omega}_{x}, \boldsymbol{\omega} \cdot \boldsymbol{\omega}_{y}, \boldsymbol{\omega} \cdot \boldsymbol{\omega}_{z}\right]} \\
& U=\sqrt{\frac{\dot{\alpha}_{\max }^{2}}{\dot{\alpha}_{x}^{2}} v_{x}^{2}+\frac{\dot{\alpha}_{\max }^{2}}{\dot{\alpha}_{y}^{2}} v_{y}^{2}+v_{z}^{2}}
\end{aligned}
$$

Approximately equal to an anisotropic GGX lobe for small roughness

$$
\approx 4 \pi \dot{\alpha}_{x} \dot{\alpha}_{y} D\left(\boldsymbol{\omega} ;\left[\begin{array}{c}
\boldsymbol{\omega}_{x} \\
\boldsymbol{\omega}_{y} \\
\boldsymbol{\omega}_{z}
\end{array}\right], 2 \dot{\alpha}_{x}, 2 \dot{\alpha}_{y}\right)
$$

Analytical Lobe Approximation

Results

1600×1200 SCREEN RESOLUTION
AMD RYZENTM THREADRIPPERTM 2990WX PROCESSOR

Combination with PCBPT propons (15 min)

Caustics reflected on the mirror (GGX roughness: 0.0001)

Combination with PCBPT PPopons (15 min)

Caustics reflected on the mirror (GGX roughness: 0.0001)

Combination with VCM

 PCVCM: PCBPT + vertex merging

Initial merging radius:

PCVCM
0.6 pixel
(9475 iterations)
(9311 iterations)

(7090 iterations)

Convergence Speed

Anisotropic BRDF (15 min)

Roughness: (0.0001, 0.01)

Related Work: Many-Light Methods

Pregenerated random numbers (require storage)

- Correlation can be reduced by sacrificing the memory usage [Walter06], but cannot be avoided completely

	MIS for SDG paths	Uncorrelated variance	Anisotropic BRDFs
Lightcuts [Walter05]	X	x	X
Stochastic light culling [Tokuyoshil 6,17$]$	x	x	x
Many-light importance sampling [Estevez18]	x	\checkmark	x
Ours	\checkmark	$/,$	\checkmark

On-the-fly random number generation
(no storage)

Limitations

- Perfectly specular surfaces
- Fireflies can still occur on near singularities
- Can be removed easily by VCM or using outlier rejection [Zirr 18]
- Glossy-to-glossy interreflections
\downarrow Correlation of paths due to path reuse (similar to VCM)
- Future work: correlation-aware MIS heuristics [Jendersie 19]

Conclusions

Ellipsoid for anisotropic lobes

- BVH-based acceleration for many Russian roulettes
- On-the-fly minimum random number generation in BVH traversal
- Efficient ellipsoidal range for anisotropic BRDFs
- Limited to glossy reflections, but efficient for extremely glossy reflections
- E.g., GGX roughness: 0.0001 (hard to distinguish from perfectly specular surfaces)

Thank you for your attention

References

- Arvo J. and Kirk D. 1990. Particle Transport and Image Synthesis. SIGGRAPH Comput. Graph. 24, 4, 63-66
\downarrow Estevez A. C. and Kulla C. 2018. Importance Sampling of Many Lights with Adaptive Tree Splitting. PACMCGIT 1, 2, 25:1-25:17
Georgiev I., Křivánek J., Davidovič T., and Slusallek P. 2012. Light Transport Simulation with Vertex Connection and Merging. TOG 31, 6, 192:1-192:10
Hachisuka T., Pantaleoni J., and Jensen H. W. 2012. A Path Space Extension for Robust Light Transport Simulation. TOG 31, 6 (2012), 191:1-191:10

- Keller A. 1997. Instant Radiosity. In SIGGRAPH '97. 49-56

Popov S., Ramamoorthi R., Durand F., and Drettakis G. 2015. Probabilistic Connections for Bidirectional Path Tracing. CGF 34, 4, 75-86
Tokuyoshi Y. and Harada T. 2016. Stochastic Light Culling. JCGT. 5, 1, 35-60
Tokuyoshi Y. and Harada T. 2017. Stochastic Light Culling for VPLs on GGX Microsurfaces. CGF 36, 4, 55-63
\downarrow Trowbridge T. S. and Reitz K. P. 1975. Average Irregularity Representation of a Rough Surface for Ray Reflection. J. Opt. Soc. Am. 65, 5 (1975), 531-536
B. Walter, A. Arbree, K. Bala, and D. P. Greenberg. 2006. Multidimensional Lightcuts. TOG 25, 3, 1081-1088
B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Greenberg. 2005. Lightcuts: A Scalable Approach to llumination. TOG $24,3,1098-1107$
B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In EGSR '07. 195-206

Xu K., Sun W.-L., Dong Z., Zhao D.-Y., Wu R.-D. and Hu S.-M. 2013. Anisotropic Spherical Gaussians. TOG 32, 6, 209:1-209:11
"RyzenTM" is a trademark or registered trademark of Advanced Micro Devices., Inc.
"ThreadripperTM" is a trademark or registered trademark of Advanced Micro Devices., Inc.

