PDF of a Minimum Random Number

Yusuke Tokuyoshi*
SQUARE ENIX CO., LTD.

Takahiro Harada
Advanced Micro Devices, Inc.

1 PDF of a Minimum Random Number

The probability that a uniform random number $u \in[0,1)$ is the minimum value among N uniform random numbers, is given by the following recursion:

$$
\begin{gathered}
P_{\min , N}(u)=(1-u) P_{\min , N-1}(u), \\
P_{\min , 1}(u)=1,
\end{gathered}
$$

where $1-u$ is the probability that the other random number is larger than u. Expanding this recursion, we obtain the following probability:

$$
\begin{equation*}
P_{\min , N}(u)=(1-u)^{N-1} . \tag{1}
\end{equation*}
$$

The probability density function (PDF) of the minimum random number is obtained by normalizing Eq. (1) as follows:

$$
p_{\min , N}(u)=\frac{P_{\min , N}(u)}{\int_{0}^{1} P_{\min , N}\left(u^{\prime}\right) \mathrm{d} u^{\prime}}=N(1-u)^{N-1} .
$$

2 Generation of a Minimum Random Number

The cumulative distribution function (CDF) of the $\operatorname{PDF} p_{\min , N}(u)$ is yielded as

$$
c_{\min , N}(u)=\int_{0}^{u} p_{\min , N}\left(u^{\prime}\right) \mathrm{d} u^{\prime}=1-(1-u)^{N} .
$$

Using the inverse function of this CDF, the minimum random number is generated by using a single random number $\xi \in[0,1)$ as follows:

$$
c_{\min , N}^{-1}(\xi)=1-(1-\xi)^{\frac{1}{N}} .
$$

[^0]
[^0]: *yusuke.tokuyoshi@gmail.com

