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A ADDITIONAL FORMULAS
A.1 Derivation of Jacobian Matrices

To derive Jacobian matrices, we partly followed the derivation by
Stam [2001]. Different from his derivation, we derived an approxi-
mate solution for the Jacobian matrices over the region near to the
origin of °, while Stam derived the exact solution only at the origin.
Without loss of generality, we can assume incident direction ;
as (0;,0). Let o, and w; be directions for reflection and refraction,
respectively. We denote the directions w;, ®,, ®;, and h as follows:

w; = (sin 6;, 0, cos 6;),
Wy = (xr, Yrs Zr),
ot = (X1, Y1, 2¢),

h= (xh, Yps Zh).

Let 1 be a relative refractive index between two interfaces, we can
write w, and w; as follows:

or = 2(0; - h)h - o,
nw; = (mi-h—\/m)h_wi'

Using these equations, we can obtain the projected 2D coordinates
(xr, yr) and (xy, yt) of w, and w;:

Xy = 2Axy, — sin 6;
yr = 2Ayp

nx = (A—\/A2+172 - 1) xp, — sin 6;
nye = (A-\/A2+'72-1)yh

where A = xp, sin 0; + cos 0;4/1 — x? 2

h” Yn
Therefore, for reflection, the Jacobian matrix is obtained as in the

main body of the paper. For refraction, the Jacobian matrix is calcu-
lated as follows:
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As we wrote in the main body of the paper, we assume xp,, yj,, and 6;
are small enough that we can ignore the second- and higher-order
terms of xp, yp, and sin 6;. Then, we can approximate J; as follows:

], ~ 1 |cos; — ycos? 0; +n? — 1 0
T 0 cos§; —Jcos? 0; +n2 -1
_1 cos0; — ncosO; 0
Ty 0 cos 0; — 17 cos 0;

Thus, the Jacobian matrix for refraction is also diagonal and its
diagonal entries are the same.

A.2 Adding-Doubling for Two-layer Materials

For two-layer materials, Belcour [2018] provided the result of the

adding-doubling method in Section 5 of his paper. To extend their

formulas using our result for anisotropic distribution is easy. By
. . (T.R}

replacing the scalar variances o; i

ijT’R}, The series of interactions that are possible in two-layer

with covariance matrices

materials are only R and TR*T. The atomic operators for R are
given by

eR =T,
R _
=W
R R
>t = rlzle B




For TR*T, the atomic operators are obtained as follows:

JTRT _ t12r23t12

1—rprg’
TRT _
u =W
+ t12ra3t ro3r:
STRT _ terstiz o1 o1 g (21213 L _rsra 251)
1—ra3riz 1—rasra

In these formulas, rj; and tj; denote reflection and transmission
coefficients between j-th and k-th interfaces, and K ik is a trans-

mission scaling factor which scales the roughness parameters. As
{RT}

12 can be obtained as

explained in the main body of the paper,
follows:

=l o[

Jﬁ,{x,y} =h ((X{x)y}) ’ o—lTZ,{x,y} =h (s X “{x,y}) :
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B ADDITIONAL RESULTS

B.1 Results for varying roughness parameters
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Figure 1: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at(ay, ay) = (0.01,0.01)
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Figure 2: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at (ax, ay) = (0.05,0.01)

B.2 Results for varying rotation of local coordinate system
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Figure 3: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at (ax, ay) = (0.1,0.01)
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Figure 4: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness

parameters of the top layer are fixed at (ax, ay) = (0.2,0.01)



Supplementary Document: Real-time Rendering of Layered Materials with Anisotropic Normal Distributions

top: ax=0.5, @y = 0.01
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Figure 5: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at (ax, ay) = (0.5,0.01)
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Figure 6: Rendering results for rotated local coordinate systems for the bottom layer, while the local coordinate system of the

top layer is fixed.



Supplementary Document: Real-time Rendering of Layered Materials with Anisotropic Normal Distributions Vs

RMSE: 7.73E-5
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Figure 7: Rendering results for rotated local coordinate systems for the top layer, while the local coordinate system of the
bottom layer is fixed.
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