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Abstract This paper proposes a lightweight

bidirectional scattering distribution function (BSDF)

model for layered materials with anisotropic reflection

and refraction properties. In our method, each layer of

the materials can be described by a microfacet BSDF

using an anisotropic normal distribution function

(NDF). Furthermore, the NDFs of layers can be

defined on tangent vector fields, which differ from layer

to layer. Our method is based on a previous study in

which isotropic BSDFs are approximated by projecting

them onto base planes. However, the adequateness

of this previous work has not been well investigated

for anisotropic BSDFs. In this paper, we demonstrate

that the projection is also applicable to anisotropic

BSDFs and that the BSDFs are approximated by

elliptical distributions using covariance matrices.

Keywords Layered materials; microfacet BSDF;

reflection modeling; real-time rendering.

1 Introduction

In the last several decades, the visual quality of

computer graphics has been improved significantly

due to the long-standing efforts of both the research

and industrial communities. In particular, success

in reflectance modeling has enabled representation of

a surprisingly wide variety of real-world materials

in computer graphics. Among such materials,

those comprising of thin layers of different material
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components have recently attracted much attention

due to the demand for surface-painted man-made

objects. For example, a characteristic appearance of

cars is generated by the surface coating process in

which the car body is coated many times with different

types of paints.

While accurate representation [1, 2] and sampling

of light transport paths [3] for layered materials have

been proposed in the context of offline rendering,

light transport in layered materials is usually

approximated using analytic models particularly in

real-time rendering. Weidlich and Wilkie [4] and the

extension of their work by Elek [5] linearly combined

the bidirectional scattering distribution functions

(BSDFs) of layers using a transmission factor. Guo

et al. [6] extended normal distribution functions

(NDFs) using von Mises–Fisher (vMF) distributions

to consider multiple reflection lobes and internal

scattering. However, the vMF distributions cannot

capture the heavy tails of directional distributions,

which is often required for modeling metallic materials.

Recently, Belcour [7] considered directional statistics of

light rays by projecting the directional distribution on

a base plane. The reflection or refraction property of

each layer is then defined as an operator of changing

the projected distribution. He referred to the operator

as an atomic operator. Although the atomic operator

was practically simple and powerful, its applicability

to anisotropic reflection and refraction has not been

well investigated.

In this paper, we extend the atomic operator

for anisotropic reflection and refraction properties of

layers. The previous method limited its application to

isotropic reflection due to the use of a scalar value to

define the variance of an isotropic distribution. We

replace this scalar variance with a 2 × 2 covariance

matrix to define the anisotropy of the distribution.

However, this extension is non-trivial because changes

in the shapes of directional distributions have not

been well investigated for rough boundary surfaces
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between layers with anisotropic scattering properties.

Even in the most related study [8], the changes for

reflection and refraction are calculated only on the

center of directional distributions. In contrast, we

derive the distribution shapes for entire directional

distribution by considering the coordinate transform

between those for NDFs and projected directional

distributions. We implement this extended atomic

operator for anisotropic reflections/refractions on a

real-time rendering system [9] by following a publicly

available implementation of the previous method [10].

The experimental results demonstrate that our

extension synthesizes almost identical appearances to

those obtained by offline Monte Carlo path tracing

while its computational overhead from the previous

method is as small as only 2.5%.

2 Background

In the original method [7], a behavior of light

interaction with layered materials was represented by

energy of light e and two statistical parameters, that

is, the mean µ ∈ [−1, 1]2 and variance σ ∈ [0,∞]

of the distribution of light directions. The symbol

σ represents variance rather than standard deviation

following the original paper [7]. The property of a

surface between two neighboring layers is defined by

three functions each of which modifies one of the three

parameters above. For rough reflection and refraction,

the parameters are transformed as follows:

Reflection:
eR = ei × FGD∞

µR = −µi,

σR = σi + h(α)

(1)

Refraction:
eT = ei × (1− FGD∞)

µT = −ηµi

σT = σi

η + h(s× α)

(2)

where h(α) =
α1.1

1− α1.1
, s =

1

2

(
1 + η

ωi · n
ωt · n

)
,

where ωi ∈ S2 denotes an incident direction; ωt ∈ S2

refers to a refracted direction; n ∈ S2 denotes a

surface normal; (ei,µi, σi) refer to the parameters

of incident light; (e{R,T}, µ{R,T}, σ{R,T}) denote

the parameters of reflected or transmitted light;

α ∈ [0, 1] and η refer to the roughness parameter

and relative refractive index on a boundary surface

between layers, respectively. FGD∞ represents an

integral of the product of Fresnel term F , shadowing-

masking function G, and NDF D. In the original

method, Belcour [7] precomputed the FGD∞ values

while considering multiple scattering effects [11] and

stored them in a lookup table. On the other hand,

another implementation in Unity [10] ignored multiple

scattering effects and approximated the integral using

a simple product of F and G for a direction of perfect

reflection or refraction. For detailed definitions of

function h(α) and roughness scaling factor s, refer to

the original paper [7].

By successively applying the above transformations

by the layers, we can obtain eq, µq, and σq of

outgoing light for a configuration q of successive light

interactions. For instance, q = TRT represents a

transmission–reflection–transmission path. Let Q be

a set of valid sequences of light interactions. Then, a

bidirectional reflectance distribution function (BRDF)

ρ is defined as follows:

ρ(ωi,ωo) =
∑
q∈Q

eqρq(ωq,ωo, αq) (3)

where

αq = h−1(σq), ωq = reflect(µq),

ρq(ωq,ωo, αq) =
D(h)G(ωq,ωo)

4|ωq · n||ωo · n|

In these equations, ωo ∈ S2 is the outgoing direction,

D(h) ∈ [0,∞] denotes an NDF for halfvector

h = (ωq + ωo) / ∥ωq + ωo∥, G(ωq,ωo) ∈ [0, 1]

denotes a shadowing-masking function, and reflect(µq)

represents the direction of perfect reflection for µq.

The above formulas are only applicable to isotropic

reflection and refraction because the variance is

modeled with a single variance parameter σ to define

a radially symmetric distribution.

3 Layered materials with anisotropic

normal distributions

The proposed method is an extension of Belcour’s

method [7] which approximated BSDFs by projecting

them onto the base plane. The previous study

restricted their applicability only to isotropic NDFs.

In contrast, the proposed method extends the

approach to anisotropic NDFs, as shown in Fig. 1.

3.1 Covariance of projected distribution

To represent anisotropic BSDFs projected on the

base plane, we employ a 2 × 2 covariance matrix

Σ rather than a scalar variance σ. However, the
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Top layer
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Belcour [7]: isotropic

Ours:

Fig. 1 Our method works for layers with anisotropic NDFs

defined on varying tangent vector fields, whereas the previous

method [7] can be applied only to isotropic NDFs.

relationship between the tangent vector field and

the covariance matrix is non-trivial. Let tx ∈ S1

and ty ∈ S1 be the tangent and binormal vectors,

respectively, that are the orthogonal vectors on the

2D local coordinate system P of the tangent vector

field. When an NDF is projected on the plane,

the principal directions of the projected distribution

coincide with tx and ty following the definitions

of GGX and Beckmann distributions (see Fig. 2).

Because an anisotropic BSDF can be approximated by

an anisotropic spherical Gaussian [12], its projection to

the base plane is also approximated by an anisotropic

Gaussian function on the region near the distribution

center, as illustrated in Figs. 2 and 3. This

preservation of projected elliptic shapes is satisfied for

both BRDF and BTDF with varying incident zenith

angles as can be seen in Fig. 3.

Next, let us consider the relationship between a

halfvector h = (ωi + ωo)/∥ωi + ωo∥ and outgoing

direction ωo for reflection. Let (xh, yh) be the

NDF BRDF

Fig. 2 Projected distributions for an NDF and corresponding

BRDF are visualized. To evaluate the BRDF, we used the

zenith angle π/4 of incident direction ωi, as shown in the image

to the left. The principal axes for these distributions are the

same, and the elliptic shape for the NDF is approximately

preserved in that of the BRDF.

B
R

D
F

B
TD

F

Fig. 3 Visualizations of projected distributions for BSDFs

with different incident zenith angles. The distributions are

calculated with a GGX normal distribution indicated in the

center of Fig. 2. In this figure, the Fresnel terms for conductors

and dielectrics are omitted for only focusing on material-

independent BSDF terms.

projection of h in P, and (xo, yo) be the projection

of ωo in P. As discussed in Appendix B of a previous

study [8], we assume that ωi = (sin θi, 0, cos θi) in

the tangent space using an incident zenith angle θi ∈
[0, π/2] and an azimuthal angle of zero without loss

of generality. Then, the relationship between (xh, yh)

and (xo, yo) can be written as follows:

xo = 2

(
xh sin θi + cos θi

√
1− x2

h − y2h

)
xh − sin θi

yo = 2

(
xh sin θi + cos θi

√
1− x2

h − y2h

)
yh

Thus, the Jacobian matrix Jr for the coordinate

transform from (xh, yh) to (xo, yo) will be

Jr =

[
J00 J01
J10 J11

]

J00 = 4xh sin θi +
2
(
1− 2x2

h − y2h
)
cos θi√

1− x2
h − y2h

J01 = − 2xhyh cos θi√
1− x2

h − y2h

J10 = 2yh sin θi −
2xhyh cos θi√
1− x2

h − y2h

J11 = 2xh sin θi +
2
(
1− x2

h − 2y2h
)
cos θi√

1− x2
h − y2h

Assuming xh, yh, and θi are small enough and we can

ignore the second- and higher-order terms of xh, yh,

and sin θi, we approximate the above Jacobian matrix

as

Jr ≈

[
2 cos θi 0

0 2 cos θi

]
(4)
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The same representation was derived by Stam [8] as an

exact solution at the perfect reflection vector (which

corresponds to µR). Unlike his solution, Eq. (4) is the

approximation over the region near µR. For refraction,

we also approximate the Jacobian matrix J t using the

same assumption, as follows:

J t ≈

[
(cos θi − η cos θt) /η 0

0 (cos θi − η cos θt) /η

]
(5)

where θt is the zenith angle for the direction of

refraction ωt. For both cases, the Jacobian matrix

is a simple scaling matrix. For the derivation, please

refer to Appendix A.1.

Although the assumption of the small zenith

angle θi causes a large error in the grazing angle,

we prioritize the simplicity of implementation over

physical strictness. While this problem of the grazing

angle was also observed in the previous study [7], a

compromise is allowable in practice, as we demonstrate

later. We also need to consider the effects of the

Fresnel term, shadowing-masking function, and cosine

term to define a BSDF [13]. Nevertheless, these

effects are low-frequency and can be negligible when

the roughness parameters are relatively small. In the

following, we discuss the property of the coordinate

transform using the above Jacobian matrices.

As we can see in Eqs. (4) and (5), the

Jacobian matrices for both reflection and refraction

are diagonal, and their two diagonal entries are equal.

The diagonality implies that the directions of the

orthogonal basis vectors of P are preserved, as shown

in Fig. 2. Therefore, we only need to transform

anisotropic roughness parameters (αx, αy) ∈ [0, 1]2

along the tangent vector tx and binormal vector ty
to define a covariance matrix for the projected BSDF.

The uniformity of the diagonal entries implies that the

stretch of the variances along tx and ty depends on

neither the definition of the tangent vector field nor

the difference in the roughness parameters. Therefore,

we transform the roughness parameters (αx, αy) to

corresponding scalar variances (σx, σy) ∈ [0,∞]2 using

h(α). Accordingly, the covariance matrix for a BSDF

is given as

Σ =
[
tx ty

]⊤ [
σx 0

0 σy

] [
tx ty

]

Where

σ{x,y} =

{
h
(
α{x,y}

)
, for reflection

h
(
s× α{x,y}

)
, for refraction

For energy e and mean µ , we use the same

representations as those in the previous study because

the anisotropy of BSDFs does not affect these terms

significantly. Therefore, we obtain an extended BSDF

with anisotropic NDFs by substituting the above

covariance matrix Σ into Eqs. (1) and (2). To build

a global BRDF using the adding-doubling method as

in the original paper [7], we take exactly the same

procedure introduced in it.

4 Results and discussion

The following experiments were conducted on a

computer with an Intel® Core™ i7-8700 3.2 GHz

CPU and NVIDIA® GeForce® RTX 2080 Ti GPU.

We use a two-layer material in which the bottom

conductor layer is coated with a clear dielectric layer

unless otherwise specified. The formulas for two-layer

materials are obtained by the adding-doubling method,

and their derivations are described in Appendix A.2.

We implement the proposed method using Marmoset

Toolbag 3 [9].

In the rendering pipeline, we follow an

approximation for FGD∞ in the implementation

of Unity [10] to avoid the lookup table being memory

consuming for anisotropic materials. In addition,

we calculate an average covariance matrix, which

can differ from channel to channel, for three color

channels following the public implementation of the

previous studies [7, 10].

While we mainly show the results of image-based

lighting, the computation time of our method for a

trivial scene with a directional light is 1.01 ms, which

is sufficiently short for real-time applications such as

interactive material editing.

Figure 4 shows the rendering results obtained

using our method for various layered materials

with isotropic/anisotropic NDFs defined on the

same/different tangent vector fields. These results

include only direct illumination from environment

maps. For this image-based lighting, we compute the

Monte Carlo integration using visible NDF importance

sampling [14] for each term of Eq. (3). We compare

the computation time between Belcour’s method [7]

for isotropic BSDFs and our extension to anisotropic

BSDFs. In this comparison, we evaluate both methods

by sampling the BRDFs in Eq. (3) separately to

4
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(a) Metallic paint (b) Frosted metal (d) Rough (di�. tangent)(c) Rough (same tangent) (e) Rough (di�. material)

= 0.01,      = 0.01top: 
= 0.2,      = 0.01bo�om: 

= 0.2,      = 0.01top: 
= 0.01,      = 0.01bo�om: 

= 0.2,      = 0.01top: 
= 0.2,      = 0.01bo�om: 

= 0.2,      = 0.01top: 
= 0.2,      = 0.01bo�om: 

= 0.2,      = 0.01top: 
= 0.2,      = 0.01bo�om: 

Fig. 4 Layered materials rendered using the proposed method. Each layer of the materials has an anisotropic NDF, and it can

be defined on a tangent vector field, which differs from layer to layer. The materials are comprised of dielectric top layers with a

refractive index of 1.49 for (a)–(e), and metallic bottom layers with a complex refractive index of (1+1i, 1+0i, 1+0i) for (a)–(d)

and (0.143+3.983i, 0.373+2.387i, 1.444+1.602i) for (e).

focus on the overhead incurred by changing scalar

variance σ to our covariance matrix Σ. Figure 5

shows the rendering time using varying numbers of

samples. Although our method increases the ALU

overhead and register pressure, this experimental

result demonstrates that the performance degradation

when using our method for anisotropic BSDFs is

negligible.

The visual comparisons of the results for different

layer configurations and different tangent vector

directions are shown in Figs. 6 and 7, respectively.

In these figures, pixel-wise root-mean-square errors

(RMSEs) are visualized in the column to the right.

We find that the RMSEs are rather large on the

rim regions of the sphere, where the viewing angles

are comparatively small. However, the overall

computation time to render a single frame with 2048

samples per pixel was 587.8 ms for naive simulation

to obtain reference images, whereas that for our

method is only 45.1 ms. Additional results using

different roughness parameters and rotation angles for

the local coordinate system appear in the Electronic

Supplementary Material.

Fig. 5 The chart to the left compares the computation

time of Belcour [7] for isotropic BSDFs and our extension to

anisotropic BSDFs. The chart to the right shows the additional

computation time in percentage terms of our extension over

Belcour’s method.

Our extension to anisotropic BSDFs does not

depend on the number of material layers. Therefore,

it is also available with materials with more than

three layers as shown in Fig. 8(b). In this material,

the layered material shown in Fig. 8(a) (which is

equivalent to Fig. 4(d)) is further coated by a smooth

dielectric layer. In addition, the atomic operators for

anisotropic reflection/refraction can be combined also

with those for isotropic ones. For instance, Fig. 8(c)

shows a rendering result for a layered material

including an interface of a participating medium. In

Belcour’s method, he assumed the medium exhibits
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RMSE: 9.16E-5

RMSE: 9.27E-5

RMSE: 7.98E-5

Reference Ours

Reference Ours

Reference Ours

Fig. 6 Our results are visually compared with the reference

images, and the error value for each pixel is also visualized in

the images to the right. The root-mean-square error (RMSE)

values are shown to the bottom left. The roughness parameters

for these results are the same as those used for Figs. 4(a), 4(b),

and 4(d).
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RMSE: 9.16E-5

to
p:

RMSE: 7.73E-5

RMSE: 9.16E-5

to
p:

RMSE: 8.40E-5

RMSE: 9.16E-5

to
p:

RMSE: 9.82E-5

Reference Ours

Reference Ours

Reference Ours

Fig. 7 The visual comparisons with RMSEs are shown to

different combination of tangent vector directions. From top

to bottom, the tangent vectors of two layers have π/2, π/3, and

π/6 gaps, respectively.

only forward scattering, and approximated the change

of the directional distribution using an atomic operator

as well. In our result in Fig. 8(c), we inserted this

forward scattering layer in the middle of dielectric and

conductor layers of the material shown in Fig. 8(a).

For the forward scattering layer, an atomic operator

is calculated by the parameter of the medium, i.e.,

absorption coefficient ka, scattering coefficient ks, and

average cosine of the scattering angle g (see the

literature [15]). For the details, refer to Belcour’s

original paper [7].

Dielectric
Conductor

Dielectric
Dielectric
Conductor

Dielectric
Medium
Conductor

(a) 2 layers (Fig. 4(d)) (b) 3 layers (c) Include medium

Fig. 8 Layered materials with more than two layers and

with participating media are rendered using our method. The

layer configurations are illustrated in the bottom. In material

(b), the material shown in (a) is coated by a smooth dielectric

layer (η = 1.2). In material (c), a forward scattering layer (g =

0.9, ks = (0.01, 1.0, 0.01), ka = (0.01, 1.0, 0.01)) is inserted in

the middle of two layers of the material (a).

While our method renders anisotropic layered

materials in interactive frame rates by extending

Belcour’s method [7], it is inevitable that our method

inherits the limitations of this previous method. For

example, for layers with very high roughness and

indexes of refraction, the directional distributions

projected on the base plane may not be elliptical.

Despite this fact, the applicability of our method to

a broad range of layered materials is beneficial to

practical graphics production.

5 Conclusions

In this paper, we introduced a real-time approach

for rendering layered materials wherein the layers

are modeled by anisotropic NDFs defined on varying

tangent vector fields. The proposed method is easily

implemented on the top of the original approach

proposed by Belcour [7] for isotropic NDFs, and works

with minor additional computation cost.

A Derivations of formulas

A.1 Derivation of Jacobian matrices

To derive Jacobian matrices, we partly followed the

derivation by Stam [8]. Different from his derivation,

we derived an approximate solution for the Jacobian

matrices over the region near to the center of the

NDF, while Stam derived the exact solution only at

the center. Without loss of generality, we can assume

incident direction ωi as (θi, 0). Let ωr and ωt be

directions for reflection and refraction, respectively.

We denote the directions ωi,ωr,ωt, and h as follows:

ωi = (sin θi, 0, cos θi)

ωr = (xr, yr, zr)

ωt = (xt, yt, zt)

h = (xh, yh, zh)

Let η be a relative refractive index between two

interfaces, we can write ωr and ωt as follows:

ωr = 2(ωi · h)h− ωi

ηωt =
(
ωi · h−

√
(ωi · h)2 + η2 − 1

)
h− ωi

Using these equations, we can obtain the projected 2D

coordinates (xr, yr) and (xt, yt) of ωr and ωt:{
xr = 2Axh − sin θi

yr = 2Ayhηxt =
(
A−

√
A2 + η2 − 1

)
xh − sin θi

ηyt =
(
A−

√
A2 + η2 − 1

)
yh

6
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where A = xh sin θi + cos θi
√
1− x2

h − y2h.

Therefore, for reflection, the Jacobian matrix is

obtained as in the main body of the paper. For

refraction, the Jacobian matrix is calculated as follows:

J t =

[
∂xt

∂xh

∂xt

∂yh
∂yt

∂xh

∂yt

∂yh

]

η
∂xt

∂xh
= A−

√
A2 + η2 − 1 + xh

∂A

∂xh

(
1− 2A√

A2 + η2 − 1

)

η
∂xt

∂yh
= xh

∂A

∂yh

(
1− 2A√

A2 + η2 − 1

)

η
∂yt
∂xh

= yh
∂A

∂xh

(
1− 2A√

A2 + η2 − 1

)

η
∂yt
∂yh

= A−
√

A2 + η2 − 1 + yh
∂A

∂yh

(
1− 2A√

A2 + η2 − 1

)

where


∂A
∂xh

= sin θi − xh cos θi√
1−x2

h−y2
h

,

∂A
∂yh

= − yh cos θi√
1−x2

h−y2
h

.

As we wrote in the main body of the paper, we assume
xh, yh, and θi are small enough and we can ignore the
second- and higher-order terms of xh, yh, and sin θi.
Then, we can approximate J t as follows:

Jt≈
1

η

[
cos θi−

√
cos2 θi + η2 − 1 0

0 cos θi−
√

cos2 θi + η2 − 1

]

=
1

η

[
cos θi − η cos θt 0

0 cos θi − η cos θt

]

Thus, the Jacobian matrix for refraction is also

diagonal and its diagonal entries are the same.

A.2 Adding-doubling for two-layer materials

For two-layer materials, Belcour [7] provided the result

of the adding-doubling method in Section 5 of his

paper. To extend their formulas using our result

for anisotropic distribution is easy. By replacing

the scalar variances σ
{T,R}
ij with covariance matrices

Σ
{T,R}
ij . The series of interactions that are possible in

two-layer materials are only R and TR+T . The atomic

operators for R are given by

eR = r12

µR = −µi

ΣR = r12Σ
R
12

For TR+T , the atomic operators are obtained as

follows:

eTR+T =
t12r23t12
1− r23r12

µTR+T = −µi

ΣTR+T =
t12r23t12
1− r23r12

×[
ΣT

12+ΣT
21+K21

(
ΣR

23+
r23r21

1− r23r21
ΣR

21

)]
In these formulas, rjk and tjk denote reflection

and transmission coefficients between j-th and k-th

interfaces, and Kjk is a transmission scaling factor

which scales the roughness parameters. As explained

in the main body of the paper, Σ
{R,T}
12 can be obtained

as follows:

Σ
{R,T}
12 =

[
tx ty

]⊤ [
σ
{R,T}
12,x 0

0 σ
{R,T}
12,y

] [
tx ty

]
σR
12,{x,y} = h

(
α{x,y}

)
, σT

12,{x,y} = h
(
s× α{x,y}

)
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