
Tiled Reservoir Sampling for Many-Light Rendering
Yusuke Tokuyoshi

yusuke.tokuyoshi@amd.com
Advanced Micro Devices, Inc.

Previous (9.4 ms)Previous (9.4 ms)

RMSE: 0.020RMSE: 0.020
Ours (7.6 ms)Ours (7.6 ms)

RMSE: 0.007RMSE: 0.007

Previous (16.6 ms)Previous (16.6 ms)

RMSE: 0.058RMSE: 0.058
Ours (14.6 ms)Ours (14.6 ms)

RMSE: 0.013RMSE: 0.013

Figure 1: Dynamic global illumination using reservoir sampling and temporal reuse for 1MVPLs. Our tiled reservoir sampling
for initial candidates reduces the variance caused by VPLs close to surfaces. The computation time is the total of the reservoir
sampling pass and the reuse pass (3840×2160 pixels, AMD Radeon™ RX 6900 XT GPU).

ABSTRACT
While reservoir-based spatiotemporal importance resampling (Re-
STIR) is a powerful technique for real-time many-light rendering,
initial candidate samples are often generated ignoring the distance
between the shading point and the light source when they are
close. For dynamic lights close to surfaces such as virtual point
lights (VPLs), it is inefficient even reusing samples spatially and
temporally by ReSTIR. To take into account the distance from the
light sources for sampling initial candidates, we introduce a tiled
reservoir sampling technique that combines tile-based stochastic
light culling and reservoir sampling. This initial candidate sampling
is unbiased and performs efficiently on the GPU.

1 INTRODUCTION
While virtual point lights (VPLs) [Keller 1997] have often been
used to approximate indirect illumination, improving the quality
of dynamic scenes is still challenging. The visibility of VPLs can
be tested by tracing shadow rays on the GPU, just as this is done
for direct illumination. However, to achieve real-time frame rates,
the number of rays must be limited to a small number, such as one
ray per pixel. Therefore, we need an efficient method to sample an
important VPL for each pixel from many (e.g., millions of) dynamic
VPLs.

For real-time direct illumination, efficient light sampling meth-
ods have been developed such as reservoir-based spatiotemporal
importance resampling (ReSTIR) [Bitterli et al. 2020]. ReSTIR resam-
ples a light from candidate samples that have been reused spatially
and temporally based on weighted reservoir sampling [Chao 1982].
Although this spatiotemporal reuse increases the number of candi-
date samples from tens to thousands [Wyman and Panteleev 2021],
initial candidates are often generated ignoring the distance between
the shading point and the light source when they are close. Since
the contribution from each light is inversely proportional to the dis-
tance squared, initial candidate sampling that ignores the distance

email: yusuke.tokuyoshi@amd.com
Advanced Micro Devices, Inc. Technical Report, No. 21-11-ecdc, November 2021.

is inefficient, especially for lights close to surfaces. For dynamic
VPLs, this problem becomes more significant (see Fig. 1), because
the VPLs are on surfaces and have spatially varying normals due
to normal maps.

In this report, we introduce a tiled reservoir samplingmethod that
uses tile-based stochastic light culling [Tokuyoshi and Harada 2017]
in initial candidate generation for reservoir sampling. Stochastic
light culling is an unbiased culling technique based on Russian
roulette [Arvo and Kirk 1990], and it efficiently rejects distant lights
by using random light ranges in an existing tiled culling frame-
work [Stewart 2015]. By using stochastic light culling, we sample
candidates considering the distance from each light. This approach
reduces the variance for lights close to surfaces such as VPLs. This
report shows improvements in VPL-based dynamic indirect illumi-
nation as a challenging case, but our method can also be applied to
both direct and indirect illumination.

2 TILED RESERVOIR SAMPLING
2.1 Stochastic Light Culling for Candidates
While a previous ReSTIR implementation [Wyman and Panteleev
2021] uniformly sampled 32 candidates per pixel from a subset
of lights for each tile, we now generate candidates by rejecting
unimportant lights from the light subset. This rejection is performed
using Russian roulette accelerated with tile-based stochastic light
culling. For our Russian roulette, the probability of acceptance
𝑃 (𝑥) ∈ [0, 1] is proportional to the radiant intensity 𝐼 ∈ [0,∞)
divided by the distance squared 𝑙2 ∈ [0,∞) for each light vertex
(e.g., VPL) 𝑥 as follows:

𝑃 (𝑥) = min
(
𝐼

𝛿𝑙2
, 1
)
,

where 𝛿 ∈ (0,∞) is a user-specified parameter to control the vari-
ance (for parameter setting, please refer to the original work [Tokuyoshi
and Harada 2016]). In this report, we use 𝛿 = 0.002 for our experi-
ments. By generating a single random number for each light, the
acceptance range is mapped to a distance from the light (see Fig. 2a).

Y. Tokuyoshi

VPL

acceptreject

(a) Stochastic light culling (b) Our sampling pipeline

Figure 2: Stochastic light culling (a) restricts the range of in-
fluence of each light (e.g., VPL) based on Russian roulette.
We cull the initial candidate lights using the bounding
spheres of these random light ranges. In our sampling
pipeline (b), the processes for this culling are highlighted in
yellow. Each orange box is implemented with a single-pass
compute shader.

Therefore, by using this random range for each light, we cull lights
(which would be rejected by Russian roulette) before performing
Russian roulette.

2.2 Tiled Culling Implementation
Our culling implementation (see Fig. 2b) is a combination of compute-
based tiled culling [Stewart 2015] and interleaved sampling [Segovia
et al. 2006]. This tiled culling stores indices of accepted lights (with
false positives) in a light list allocated in a local data share for each
tile. To save the data size, we use a 16-bit integer type for this light
list. Thus, our culling implementation limits the number of lights
to 65536. To handle more than 65536 lights, we first split lights
into groups of 65536 lights, and then randomly select one group
for every frame in a round-robin manner. For the selected 65536
lights, random light ranges and their bounding spheres are gener-
ated before the culling process. Then, during the culling process,
these 65536 lights are further split into 1024 lights per pixel by 8×8
interleaved sampling. This interleaved sampling avoids a positive
correlation between adjacent pixels. To perform tiled culling with
interleaved sampling, pixels are deinterleaved into 8×8 subregions
(see Fig. 3b) so that pixels have the same light subset (i.e., 1024
lights) within each subregion. Finally, the light subsets are culled
for each tile using their bounding spheres. This implementation
assumes diffuse VPLs for simplicity, but we can also support glossy
VPLs by extending the bounding spheres to ellipsoids. For details on
constructing bounding spheres and bounding ellipsoids for VPLs,
please refer to Tokuyoshi and Harada [2017].

2.3 Reservoir Sampling with Russian Roulette
Once the culling process is completed, we perform Russian roulette
and reservoir sampling for the light list. The integration of lighting
using reservoir sampling with one reservoir is written as follows:∫

Ω
𝑓 (𝑥)d𝜇 (𝑥) ≈ 𝑓 (𝑦)

𝑝 (𝑦)𝑤,

D
einterleave

R
eorder

(a) G-buffer (b) 8×8 subregions (c) Tiled reservoir (d) Reservoirs
sampling

Figure 3: Interleaved sampling via deinterleaving. Our tiled
reservoir sampling is executed for deinterleaved pixels to
exploit the pixel coherence.

where 𝑓 (𝑥) ∈ [0,∞) is the contribution from a light vertex 𝑥 , 𝑦
is the light vertex resampled from candidates according to their
weights, 𝑝 (𝑦) ∈ [0,∞) is the target PDF (proportional to the light
contribution without the visibility), and𝑤 ∈ [0,∞) is the accumu-
lated candidate weight that is the normalization factor for the PDF.
For our initial candidates, this accumulated weight is given by

𝑤 =
1
𝑀

∑︁
𝑖∈𝐿

𝑝 (𝑥𝑖)
𝑝 (𝑥𝑖)

𝐻 (𝑃 (𝑥𝑖) − 𝜉𝑖)
𝑃 (𝑥𝑖)︸ ︷︷ ︸

weight for each candidate

,

where 𝑀 ∈ N is the candidate count, 𝑖 is the light index in the
light list 𝐿, 𝑝 (𝑥𝑖) ∈ [0,∞) is the source PDF, 𝜉𝑖 ∈ [0, 1) is the per-
light uniform random number, and 𝐻 (𝑃 (𝑥𝑖) − 𝜉𝑖) is the Heaviside
function: 1 if 𝜉𝑖 < 𝑃 (𝑥𝑖), otherwise 0. Although our initial candidate
count is𝑀 = 1024, the computational complexity of this sampling
is 𝑂 (|𝐿 |). Also, light data access is coherent in a tile. Thus, our
sampling is inexpensive while taking into account the light intensity
and the distance using Russian roulette.

2.4 Reordering of Reservoir Pixels
Since our tiled reservoir sampling is executed for deinterleaved
pixels (see Fig. 3c), the resulting reservoirs should be reordered to
their respective original pixels (see Fig. 3d). Therefore, we store the
reservoirs in a buffer at the end of the reservoir sampling pass, and
then gather them at the beginning of the reuse pass. This reuse
pass updates 𝑦 and𝑤 in each reservoir as in the existing ReSTIR.

3 RESULTS
Here we show the results rendered using a combination of our tiled
reservoir sampling and temporal reuse for 1M single-bounce VPLs
on an AMD Radeon™ RX 6900 XT GPU. The tile size is 16×16 pixels
for our tiled reservoir sampling. The image quality is evaluated
with the root-mean-squared error (RMSE) metric. For temporal
reuse in this experiment, we reuse the shadow ray visibility both
for temporal resampling and shading [Wyman and Panteleev 2021]
to perform one ray per pixel. We omit spatial reuse (which requires
additional rays) for simplicity. Although temporal reuse can pro-
duce correlation artifacts during motion, we reduce this correlation
by using stochastic rounding for temporal reprojection (see Appen-
dix A for details).

Fig. 4 shows the comparison between the previous uniform can-
didate sampling and our tiled reservoir sampling. The previous
method samples 32 candidates per pixel from 1024 lights per tile
(i.e., 𝑀 = 32 without Russian roulette), while our method culls
distant lights from 1024 lights per tile (i.e., 𝑀 = 1024 with Rus-
sian roulette). For the previous method, we set the tile size to 8×8

Tiled Reservoir Sampling for Many-Light Rendering

Reservoir sampling pass: 4.82 msReservoir sampling pass: 4.82 ms
Ruse pass: 4.47 msRuse pass: 4.47 ms

RMSE: 0.106RMSE: 0.106

Reservoir sampling pass: 3.77 msReservoir sampling pass: 3.77 ms
Ruse pass: 4.74 msRuse pass: 4.74 ms

RMSE: 0.036RMSE: 0.036

w
/o

tem
poralreuse

w
ith

tem
poralreuse

(a) Previous (𝑀 = 32 w/o Russian roulette) (b) Ours (𝑀 = 1024 with Russian roulette) (c) Reference

Figure 4: Indirect illumination (3840×2160 pixels) using reservoir sampling. (a) The use of 32 uniformly sampled initial candi-
dates produces a significant variance for VPLs. (b) Ourmethod efficiently reduces the variance by stochastically culling distant
VPLs from 1024 candidates. The computation time for the reuse pass includes shadow ray tracing for visibility reuse.

pixels to reduce a positive correlation between adjacent pixels, as
recommended in Wyman and Panteleev [2021]. For this scene, our
sampling produces a smaller error with less computation time than
the previous method. Although our method uses a larger tile size
(i.e., 16×16 pixels) than the previous method and performs coherent
sampling in the tile, a positive correlation between adjacent pixels
is avoided thanks to interleaved sampling. The correlated variance
due to our coherent sampling is visible as an interleaved pattern,
and this variance is reduced by combining the reservoir sampling
with temporal reuse. Although the interleaved pattern remains
slightly, it can be further reduced by a postprocess denoiser.

4 FUTUREWORK
In this report, we have presented a technique to sample a light from
a light subset (i.e., 1024 lights for each tile), considering the distance
from each light. However, the light subset is still generated without
taking this distance into account. For future work, we would like
to investigate importance sampling methods to generate the light
subset, such as grid-based reservoirs [Boksansky et al. 2021].

REFERENCES
James Arvo and David Kirk. 1990. Particle Transport and Image Synthesis. SIGGRAPH

Comput. Graph. 24, 4 (1990), 63–66. https://doi.org/10.1145/97879.97886
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, andWojciech

Jarosz. 2020. Spatiotemporal Reservoir Resampling for Real-Time Ray Tracing with
Dynamic Direct Lighting. ACM Trans. Graph. 39, 4, Article 148 (2020), 17 pages.
https://doi.org/10.1145/3386569.3392481

Jakub Boksansky, Paula Jukarainen, and Chris Wyman. 2021. Rendering Many Lights
with Grid-Based Reservoirs. Apress, 351–365. https://doi.org/10.1007/978-1-4842-
7185-8_23

Min-Te Chao. 1982. A General Purpose Unequal Probability Sampling Plan. Biometrika
69, 3 (1982), 653–656. https://doi.org/10.1093/biomet/69.3.653

Alexander Keller. 1997. Instant Radiosity. In SIGGRAPH ’97. 49–56. https://doi.org/10.
1145/258734.258769

Benjamin Segovia, Jean-Claude Iehl, Richard Mitanchey, and Bernard Péroche. 2006.
Non-Interleaved Deferred Shading of Interleaved Sample Patterns. InGH ’06. 53–60.

Jason Stewart. 2015. Compute-Based Tiled Culling. In GPU Pro 6: Advanced Rendering
Techniques. A K Peters/CRC Press, 435–458.

Yusuke Tokuyoshi and Takahiro Harada. 2016. Stochastic Light Culling. JCGT 5, 1
(2016), 35–60.

Yusuke Tokuyoshi and Takahiro Harada. 2017. Stochastic Light Culling for VPLs on
GGX Microsurfaces. Comput. Graph. Forum 36, 4 (2017), 55–63. https://doi.org/10.
1111/cgf.13224

Chris Wyman and Alexey Panteleev. 2021. Rearchitecting Spatiotemporal Resampling
for Production. In HPG ’21.

A STOCHASTIC ROUNDING FOR TEMPORAL
REPROJECTION

In the process of temporal reuse, reservoirs in the previous frame
are looked up by using temporal reprojection. This reprojection
should be performed without texture filtering, because reservoirs
have discrete samples. However, the use of the nearest neighboring
reservoir given by rounding off a reprojected pixel position pro-
duces correlation artifacts between adjacent pixels during motion
(see Fig. 5). Although combining with spatial reuse can reduce these
artifacts [Wyman and Panteleev 2021], we reduce the correlation
by using stochastic rounding for reprojection. Given s ∈ Z2 as the

https://doi.org/10.1145/97879.97886
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1007/978-1-4842-7185-8_23
https://doi.org/10.1007/978-1-4842-7185-8_23
https://doi.org/10.1093/biomet/69.3.653
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769
https://doi.org/10.1111/cgf.13224
https://doi.org/10.1111/cgf.13224

Y. Tokuyoshi

current pixel position, we randomly reproject it to the previous
frame as follows:

s′ = ⌊s + v + 𝛏⌋,
where v ∈ R2 is the motion vector, and 𝛏 ∈ [0, 1)2 is a 2D uniform
random number.

(a) Deterministic (b) Stochastic (c) Reference
Rounding Rounding

Figure 5: (a) Temporal reprojection with deterministic
rounding produces correlation artifacts that swim during
motion. (b) We reduce the artifacts by using stochastic
rounding.

©2021 Advanced Micro Devices, Inc. All rights reserved. AMD, Ryzen and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

	Abstract
	1 Introduction
	2 Tiled Reservoir Sampling
	2.1 Stochastic Light Culling for Candidates
	2.2 Tiled Culling Implementation
	2.3 Reservoir Sampling with Russian Roulette
	2.4 Reordering of Reservoir Pixels

	3 Results
	4 Future Work
	References
	A Stochastic Rounding for Temporal Reprojection

