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Figure 1. Geometric specular antialiasing using non-axis-aligned filtering for the GGX NDF
with roughness α = 0.01. Previous slope-space filtering (a) produces undesirable artifacts on
rims, while our projected-space filtering (b) and its practical approximation (c) do not.

Abstract

Shading filtering proposed by Kaplanyan et al. is a simple solution for specular aliasing. It
filters a distribution of microfacet normals in the domain of microfacet slopes by estimat-
ing the filtering kernel using derivatives of a halfway vector between incident and outgoing
directions. However, for real-time rendering, this approach can produce noticeable artifacts
because of an estimation error of derivatives. For forward rendering, this estimation error is
increased significantly at grazing angles and near edges. The present work improves the qual-
ity of the original technique, while decreasing the complexity of the code at the same time. To
reduce the error, we introduce a filtering method in the domain of orthographically projected
microfacet normals and a practical approximation of this filtering method. In addition, we
optimize the calculation of an isotropic filter kernel used for deferred rendering by applying
the proposed projected-space filtering. As our implementation is simpler than the original
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method, it is easier to integrate in time-sensitive applications, such as game engines, while at
the same time improving the filtering quality.

1. Introduction

Rendering images in the presence of both highly specular materials and complex ge-
ometry is a challenging task. A high-quality image requires finding all tiny speckles
induced by geometric shapes as well as elongated anisotropic highlights that can of-
ten have areas much smaller than the footprint of a pixel. In addition, the presence of
high-frequency shading surfaces, such as normal maps, bump maps, or displacement
maps, amplifies this problem further. Moreover, as the roughness of the material is
decreased, these highlights increase their intensity, while their area decreases. This
makes them not only harder to find with pointwise samples used in rendering, but
also less forgiving when missed due to their high contribution. These challenges
make such effects very challenging to render in a temporally stable manner from one
frame to another even with hundreds of samples spent per pixel.

In a real-time setting, rendering small specular highlights becomes even more
challenging, because of a typical budget of only one shading sample per pixel. If,
in addition, a pixel’s area covers a larger solid angle, such as in VR head-mounted
displays, the relative area of the highlight with respect to the pixel footprint gets even
smaller, reducing the chances of finding the highlight with a single shading sam-
ple. Such high-intensity speckles can appear once in many frames, when one of the
samples occasionally lands inside the highlight. Temporal accumulation and super-
sampling techniques, such as temporal antialiasing [Karis 2014], usually completely
remove such outlier highlights, changing the material appearance.

In order to alleviate this problem, multiple prefiltering techniques have been in-
troduced. They typically work by analyzing the local proximity around the shading
point and filtering the highlight in the area with respect to the footprint covered by
the shaded pixel, respecting variations of the surface and shading parameters. One
such recent technique is geometric specular antialiasing that employs the filtering of a
microfacet normals distribution function (NDF) [Kaplanyan et al. 2016]. This method
is practically used in multiple game engines (e.g., Amazon Lumberyard [Chen 2017],
Unity 2018.2+ [2018]) and shipped games. While providing high-quality filtering for
smooth specular materials and varying geometry, the method also introduces insta-
bilities and artifacts at grazing angles, especially when estimated using GPU quad
derivatives. This work improves the quality of the original geometric specular an-
tialiasing method (Figure 1), while simultaneously decreasing the complexity of the
code. This paper builds upon our previous work [2019] and further introduces a novel
filtering space for stable geometric specular antialiasing.

• This work analyzes the increasing derivatives-estimation error at grazing angles
for geometric specular antialiasing in forward rendering (Section 3).
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Symbol Description
i Unit vector of incident direction
o Unit vector of outgoing direction
n Unit vector of shading normal at the surface point
h Unit halfway vector between i and o

[hx, hy, hz] Unit halfway vector in tangent space
D(h) Normals distribution function (NDF)
α Isotropic roughness parameter in slope space (α ∈ [0, 1])
ᾱ Filtered isotropic roughness parameter in slope space

αx, αy Anisotropic roughness parameters in slope space ([αx, αy] ∈ [0, 1]2)
A 2×2 roughness matrix in slope space
Ā Filtered 2×2 roughness matrix in slope space
B 2×2 roughness matrix in the [hx, hy] space
B̄ Filtered 2×2 roughness matrix in the [hx, hy] space
I 2×2 identity matrix

Σ‖ 2×2 covariance matrix to represent the filter kernel in slope space
Σ⊥ 2×2 covariance matrix to represent the filter kernel in the [hx, hy] space

∆h
‖
u, ∆h

‖
v Derivatives of the halfvector in slope space

∆h⊥u , ∆h⊥v Derivatives of the halfvector in the [hx, hy] space
λmin, λmax Minimum and maximum eigenvalues of Σ⊥

Table 1. Notation used throughout the paper.

• To alleviate the above problem, we introduce an orthographically projected
space for NDF filtering and a practical approximation of this filtering (Sec-
tion 4).

• We also present a simple roughness calculation for deferred rendering based on
the proposed space (Section 5).

We also demonstrate these improvements in a comparison with the previous work.

2. Background

2.1. Non-Axis-Aligned Anisotropic Microfacet BRDFs

The microfacet bidirectional reflectance distribution function (BRDF) model [Cook
and Torrance 1982] is defined as

f(i,o) =
F (i · h)G2(i,o)D(h)

4|i · n||o · n|
,

where i and o are incoming and outgoing directions, h = (i + o)/‖i + o‖ is the
halfvector, n is the shading normal, F (i · h) is the Fresnel factor, G2(i,o) is the
masking-shadowing function, and D(h) is the NDF. See Table 1 for notation. Two
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common NDFs used in renderers and game engines are the Beckmann distribution
[1963] and the GGX distribution [Walter et al. 2007]. Although microfacet BRDFs
are typically used with axis-aligned anisotropy, these BRDFs are straightforward to
generalize for non-axis-aligned anisotropy [Heitz 2014]. The generalized Beckmann
NDF is defined as

D(h) =
χ+ (hz)

π
√

det(A)h4
z

exp

(
−
[
hx
hz
,
hy
hz

]
A−1

[
hx
hz
,
hy
hz

]>)
,

where [hx, hy, hz] is the halfvector h in tangent space, and χ+ (hz) is the Heaviside
function: 1 if hz > 0; otherwise 0. The matrix A is a 2×2 nonnegative-definite matrix
to represent the roughness for non-axis-aligned anisotropy, which is two times the
covariance matrix of the slope-space distribution. In this paper, we refer to this matrix
as the roughness matrix. If surfaces are modeled with two roughness parameters
αx and αy along the tangent and bitangent axes for the axis-aligned anisotropy, the

roughness matrix is given as A =
[
α2
x 0

0 α2
y

]
. The GGX NDF is also written using A

as a roughness parameter for non-axis-aligned anisotropy as follows:

D(h) =
χ+ (hz)

π
√

det(A)
(

[hx, hy] A−1 [hx, hy]
> + h2

z

)2 . (1)

For the Smith microsurface model [1967], the form of the masking-shadowing func-
tion G2(i,o) depends on the NDF model. For details on G2(i,o) for the non-axis-
aligned anisotropic GGX NDF, please refer to Appendix A.

2.2. Slope-Space NDF Filtering

For geometric specular antialiasing, initially the Beckmann NDF is assumed and then
it is filtered using an anisotropic Gaussian kernel in the slope domain. The filter kernel
is given as a covariance matrix Σ‖ calculated for each pixel as follows:

Σ‖ = σ2

[
∆h
‖
u

∆h
‖
v

]> [
∆h
‖
u

∆h
‖
v

]
,

where σ2 = 1
2π is the variance of the pixel filter kernel in image space measured in

pixels,∗ and ∆h
‖
u and ∆h

‖
v are the derivatives of the halfvector in slope space with

respect to image-space axial pixel offsets. The filtering process is a convolution of
the estimated kernel with the NDF of the material. Since the Beckmann NDF is a
2D Gaussian distribution in slope space, this filtering becomes a convolution of two
Gaussian distributions, which has a simple closed-form solution. Hence, the resulting
∗Previous work [Kaplanyan et al. 2016; Tokuyoshi and Kaplanyan 2019] used σ2 = 0.25, but this

paper uses σ2 = 1
2π

. Please refer to Appendix B for details of our parameter setting.

34

http://jcgt.org


Journal of Computer Graphics Techniques
Stable Geometric Specular Antialiasing with Projected-Space NDF Filtering

Vol. 10, No. 2, 2021
http://jcgt.org

filtered NDF is also an anisotropic Beckmann NDF that uses the following 2×2 matrix
as its roughness parameter:

Ā = A + 2Σ‖.

If the surfaces are modeled with axis-aligned anisotropy A =
[
α2
x 0

0 α2
y

]
, the filtered

roughness matrix for this case is

Ā =

[
α2
x 0

0 α2
y

]
+ 2Σ‖. (2)

It was also shown that this filtered roughness matrix can be used to approximate the
filtering of the GGX NDF. Please see the original work [Kaplanyan et al. 2016] for
more details.

3. Error Analysis for Derivative Estimation

Derivative Estimation. For real-time computer graphics APIs (e.g., DirectX R© and
OpenGL R©), derivatives can be estimated in a pixel shader using intrinsic functions
(e.g., ddx and ddy in HLSL). These intrinsics compute the difference between val-
ues of two adjacent pixels in a 2×2 shading quad. However, this rough estimation
produces a numerical error (Figure 2(a)) especially for grazing angles of the view
direction o. To suppress artifacts caused by this error, Kaplanyan et al. [2016] used
a biased axis-aligned rectangular filtering technique. They also clamped the band-
width of their rectangular kernel. However, for the GGX NDF, artifacts can still be
noticeable at grazing angles as shown in Figure 2(b).

RMSE: 573.6RMSE: 573.6
MAE: 0.643MAE: 0.643

(a) Non-axis-aligned filtering

RMSE: 0.281RMSE: 0.281
MAE: 0.00698MAE: 0.00698

(b) Axis-aligned filtering (c) Reference

Figure 2. Previous slope-space NDF filtering methods for the SPONZA scene (closeups). (a)
While NDF filtering is formulated using the non-axis-aligned filter kernel Σ‖, it is numerically
unstable in practice. (b) A biased axis-aligned filter kernel suppresses undesirable artifacts by
blurring them. However, blurred artifacts can still be noticeable for the GGX NDF.
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n
h

estimation error of derivatives (ε◦x, ε
◦
y)

error in slope space (ε‖x, ε
‖
y)

Figure 3. Estimation error of derivatives of the halfvector h is increased in slope space for
grazing h. This error can become larger than the magnitude of the slope of h, and thus
inappropriate filtering is performed.

Error Analysis. In this paper, we show that the above estimation error is significantly
increased by projecting the halfvector h into slope space (Figure 3). This increase of
the error is represented using the Jacobian matrix of the projection as follows:[

ε
‖
x

ε
‖
y

]
= J◦→‖

[
ε◦x
ε◦y

]
,

where ε‖x and ε‖y are the errors in slope space: ε◦x is the error on the great circle passing
through the halfvector h and normal n; ε◦y is the error on the great circle passing
through the halfvector h and n×h

‖n×h‖ . The Jacobian matrix J◦→‖ of the transformation
from spherical space to slope space is given by

J◦→‖ = − 1

h2
z

√
1− h2

z

[
hx −hyhz
hy hxhz

]
.

For derivation, please refer to Appendix C. The determinant of this Jacobian matrix
is

det
(
J◦→‖

)
=

1

h3
z

≥ 1.

The magnitude of the error in slope space can be larger than the magnitude of the
slope of the halfvector for small values of hz . Hence, significant artifacts are induced
for grazing halfvectors due to inappropriate filtering. These artifacts are noticeable
especially for the GGX NDF, because the GGX distribution has a heavier tail than
the Beckmann distribution. In addition, since this error can produce an inordinately
elongated kernel, a noticeable precision error is produced later, when evaluating the
filtered non-axis-aligned BRDF (please see Appendix A.4).

4. NDF Filtering in the Orthographically Projected Space

As was shown using Jacobian analysis, artifacts appear when the halfvector approaches
grazing angles. However, NDF filtering of a smooth specular material is usually un-
necessary for these grazing halfvectors because they do not produce highlights. For
rough materials, filtering can be disabled all together, since it does not have an effect.

36

http://jcgt.org


Journal of Computer Graphics Techniques
Stable Geometric Specular Antialiasing with Projected-Space NDF Filtering

Vol. 10, No. 2, 2021
http://jcgt.org

∆h‖

(a) Previous derivatives

∆h⊥

(b) Our derivatives

Figure 4. While the previous method (a) estimates the derivatives in slope space, our method
(b) estimates the derivatives on the projected plane to reduce the filtering error.

Therefore, we introduce a projection of the filtering space to shrink the derivatives for
grazing angles by assuming the GGX NDF. By shrinking the derivatives, we are also
able to shrink the estimation error of the derivatives.

4.1. Proposed Projection

Instead of the projection into slope space for NDF filtering, we propose the ortho-
graphic projection onto the [hx, hy] plane (Figure 4). Let ∆h⊥u and ∆h⊥v be the
derivatives of [hx, hy] (please see Kaplanyan et al. [2014] for details). Then our filter
kernel is given by the following covariance matrix:

Σ⊥ = σ2

[
∆h⊥u
∆h⊥v

]> [
∆h⊥u
∆h⊥v

]
. (3)

This orthographic projection is simply implemented by removing a division code from
the projection into slope space (please see Listings 2 and 3). The Jacobian matrix of
this projection is given by

J◦→⊥ =
1√

1− h2
z

[
hxhz −hy
hyhz hx

]
.

The determinant of this Jacobian matrix is

det (J◦→⊥) = hz ≤ 1.

Therefore, this projection avoids the increase of the error for grazing halfvectors.

4.2. Projected-Space Filtering for the GGX NDF

This section introduces an NDF filtering method in the orthographically projected
space. Although this projected-space filtering is not practical (due to high cost and
numerical limitations), we derive a practical approximation from this method in Sec-
tion 4.3. To perform NDF filtering in the orthographically projected space, we trans-
form the NDF from slope space to the projected space as shown in Figure 5. The GGX
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(a) NDF (e) Filtered NDF

(b) NDF (c) Filtering (d) Filtered NDF

∆h⊥

Slope space

Orthographically projected space

A

B B̄

Ā

Figure 5. Our projected-space filtering for the GGX NDF. (a) The GGX NDF is a bell-shaped
distribution P in slope space and parameterized with a roughness matrix A. (b) Instead of
this slope space, we map the NDF into a plane using orthographic projection. (c) In this
projected space, the GGX NDF is an amplified P with a roughness matrix B. Therefore,
by approximating the distribution P and pixel footprint with Gaussians, we perform analytic
NDF filtering in the projected space. Finally, the filtered NDF in the projected space (d) is
mapped into slope space (e) to obtain the filtered roughness parameter Ā.

NDF (Equation (1)) is expressed as a distribution P (·) in slope space
[
−hx
hz
,−hy

hz

]
as

follows:

D(h) = P

(
−hx
hz
,−hy

hz
,A

)
χ+ (hz) det

(
J⊥→‖

)
,

where det
(
J⊥→‖

)
= 1/h4

z is the Jacobian of the transformation from the projected
space [hx, hy] to slope space

[
−hx
hz
,−hy

hz

]
, and P (·) is a bivariate elliptical distribution

given by

P (x, y,A) =
1

π
√

det(A)
(

[x, y] A−1 [x, y]> + 1
)2 .

For the GGX NDF, previous NDF filtering (Equation (2)) approximated the slope-
space distribution P

(
−hx
hz
,−hy

hz
,A
)

with a Gaussian distribution. In this paper, we

approximate the GGX NDF in the [hx, hy] space with a Gaussian. Substituting h2
z =
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1−h2
x−h2

y into Equation (1), we equivalently rewrite the GGX NDF into the following
form:

D(h) =
χ+ (hz)

π
√

det(A)
(

[hx, hy] A−1 [hx, hy]
> + 1− h2

x − h2
y

)2

=
χ+ (hz)

π
√

det(A)
(

[hx, hy] (A−1 − I) [hx, hy]
> + 1

)2

=
χ+ (hz)

π
√

det(A)
(

[hx, hy] B−1 [hx, hy]
> + 1

)2 ,

where matrix B is given by

B =
(
A−1 − I

)−1
. (4)

Using this B, we rewrite the GGX NDF into the following [hx, hy]-space distribution:

D(h) =

√
det(B)

det(A)

χ+ (hz)

π
√

det(B)
(

[hx, hy] B−1 [hx, hy]
> + 1

)2

=

√
det(B)

det(A)
P (hx, hy,B)χ+ (hz) . (5)

In this form, B is the roughness matrix in the [hx, hy] space, and
√

det(B)
det(A) is the

normalization factor for [hx, hy] on a unit disk Ω as follows:√
det(B)

det(A)
=

1∫∫
Ω P (x, y,B)dxdy

.

As shown in Equation (5), the GGX NDF is represented using the distribution P (·)
not only in slope space but also in the [hx, hy] space. Therefore, we approximate
P (hx, hy,B) with a Gaussian distribution whose covariance matrix is 1

2B. Using
the projected-space filter kernel whose covariance matrix is Σ⊥, NDF filtering is
represented with the Gaussian convolution in the [hx, hy] space. Although [hx, hy] is
a point on a unit disk Ω, we approximate the domain of the convolution with R2 to
obtain the following analytical solution for the filtered roughness matrix:

B̄ = B + 2Σ⊥. (6)

The filtered slope-space roughness matrix Ā is obtained from this projected-space
roughness matrix B̄ as follows:

Ā =
(
B̄−1 + I

)−1
. (7)
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float2x2 NonAxisAlignedNDFFiltering(float3 halfvectorTS, float2 roughness2) {
// Compute the derivatives of the halfvector in the projected space.
float2 halfvector2D = halfvectorTS.xy;
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);

// Compute 2 * covariance matrix for the filter kernel (Eq. (3)).
float SIGMA2 = 0.15915494;
float2x2 delta = {deltaU, deltaV};
float2x2 kernelRoughnessMat = 2.0 * SIGMA2 * mul(transpose(delta), delta);

// Convert the roughness from slope space to the projected space (Eq. (4)).
float2 projRoughness2 = roughness2 / (1.0 - roughness2);
float2x2 projRoughnessMat = {projRoughness2.x, 0.0, 0.0, projRoughness2.y};

// NDF filtering in the projected space (Eq. (6)).
float2x2 filteredProjRoughnessMat = projRoughnessMat + kernelRoughnessMat;

// Convert the roughness from the projected space to slope space (Eq. (7)).
// This implementation is optimized based on Appendix D.
// For numerical stability, the determinant is clamped with the lower bound.
float detMin = projRoughness2.x * projRoughness2.y;
float det = max(determinant(filteredProjRoughnessMat), detMin);
float2x2 m = filteredProjRoughnessMat / det + float2x2(1.0, 0.0, 0.0, 1.0);
float2x2 filteredRoughnessMat = m / max(determinant(m), 1.0);
return filteredRoughnessMat;
}

Listing 1. Our projected-space non-axis-aligned filtering (HLSL).

For the normalization factor of the filtered NDF, we use
√

det(B̄)
det(Ā)

instead of
√

det(B)
det(A)

to correct the approximation error caused by the change of the convolution domain.
Hence, by mapping roughness parameters between slope space and projected space
using Equations (4) and (7), we are able to perform projected-space filtering for the
GGX NDF. This approach significantly reduces the filtering error from the previous
slope-space method as shown in Figure 1. Listing 1 shows the HLSL code of our
projected-space NDF filtering.

4.3. Practical Approximation

Although our projected-space filtering produces less error than slope-space filtering,
the formulation of Section 4.2 is more expensive than slope-space filtering because of
the roughness mapping (Equations (4) and (7)). In addition, our formulation assumes
invertible matrices. Therefore, αx = 1 and αy = 1 are not supported. The assump-
tion is also violated when both surface roughness and derivatives are zero. Even if the
roughness is non-zero, our roughness mapping can induce an additional numerical
error for extremely small roughness (e.g., αx = 0.000001 and αy = 0.000001). To
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RMSE: 0.247RMSE: 0.247
MAE: 0.00409MAE: 0.00409

RMSE: 0.247RMSE: 0.247
MAE: 0.00409MAE: 0.00409

Projected-space filtering Approximation Reference

(a) Non-axis-aligned filtering

RMSE: 0.279RMSE: 0.279
MAE: 0.00540MAE: 0.00540

RMSE: 0.279RMSE: 0.279
MAE: 0.00540MAE: 0.00540

Projected-space filtering Approximation Reference

(b) Axis-aligned filtering

Figure 6. Our projected-space filtering and its practical approximation using the non-axis-
aligned filter kernel (a) and axis-aligned filter kernel (b) for the SPONZA scene (closeups).
The approximation error is negligible in our experiments.

reduce the computational burden and avoid those special cases, we introduce a prac-
tical approximation by assuming a small filter kernel Σ⊥. Substituting Equations (4)
and (6) into Equation (7), the filtered slope-space roughness matrix is given by

Ā =

(((
A−1 − I

)−1
+ 2Σ⊥

)−1
+ I

)−1

. (8)

Assuming elements of Σ⊥ are small, we approximate Equation (8) by the following
equation:

Ā ≈ A + 2Σ⊥.

Let A =
[
α2
x 0

0 α2
y

]
, then we have

Ā ≈

[
α2
x 0

0 α2
y

]
+ 2Σ⊥ . (9)
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Figure 7. Plots of filtered GGX NDFs on a cylinder object. The horizontal axis is the angle
between the view direction and halfvector. The dashed orange line is a numerical filtering that
approximates only a pixel footprint with a Gaussian in the projected space. Our projected-
space filtering (solid blue line) approximates both the NDF and pixel footprint to perform
analytical filtering. We introduce a further approximation (yellow dashed line, Equation (9)),
but the difference from the projected-space filtering is negligible.

Figure 6 and Figure 7 show the filtering results of our approximation and plots of fil-
tered NDFs. This approximation can induce overfiltering when the filter kernel Σ⊥ is
not small. However, the overfiltering error is smaller than previous slope-space filter-
ing, since our approximation acts as slope-space filtering using a narrower filter kernel
Σ⊥ than the previous kernel Σ‖ for shallower halfvector angles (Figure 8). This nar-
rower kernel for shallower angles does not produce significant error because the tail

n h h

NDF

low-frequency kernel

high-frequency kernel

Figure 8. Our practical approximation acts as slope-space filtering with a higher-frequency
filter kernel for a shallower halfvector angle. This filter kernel does not induce noticeable un-
derfiltering error in practice, because a grazing halfvector angle is unlikely to produce specular
highlights (i.e., noticeable aliasing).
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float2x2 NonAxisAlignedNDFFiltering(float3 halfvectorTS, float2 roughness2) {
// Compute the derivatives of the halfvector in the projected space.
float2 halfvector2D = halfvectorTS.xy / abs(halfvectorTS.z);
float2 deltaU = ddx(halfvector2D);
float2 deltaV = ddy(halfvector2D);

// Compute 2 * covariance matrix for the filter kernel (Eq. (3)).
float SIGMA2 = 0.15915494;
float2x2 delta = {deltaU, deltaV};
float2x2 kernelRoughnessMat = 2.0 * SIGMA2 * mul(transpose(delta), delta);

// Approximate NDF filtering (Eq. (9)).
float2x2 roughnessMat = {roughness2.x, 0.0, 0.0, roughness2.y};
float2x2 filteredRoughnessMat = roughnessMat + kernelRoughnessMat;
return filteredRoughnessMat;
}

Listing 2. Practical approximation of our projected-space non-axis-aligned filtering (HLSL).
This implementation is the same as Kaplanyan et al.’s slope-space filtering, except the red
code is removed.

of the NDF is low frequency in the pixel footprint. On the other hand, our approx-
imation significantly reduces undesirable artifacts without increasing the complexity
of the shader code. This is because computation of Σ⊥ is simpler than slope-space
filtering as shown in Listing 2.

Clamping the kernel size. In a similar manner to previous Kaplanyan [2016]’s im-
plementation, we can clamp the kernel size in order to reduce the potential overfilter-

float2 AxisAlignedNDFFiltering(float3 halfvectorTS, float2 roughness2) {
// Compute the bounding rectangle of halfvector derivatives.
float2 halfvector2D = halfvectorTS.xy / abs(halfvectorTS.z);
float2 bounds = fwidth(halfvector2D);

// Compute an axis-aligned filter kernel from the bounding rectangle.
float SIGMA2 = 0.15915494;
float2 kernelRoughness2 = 2.0 * SIGMA2 * (bounds * bounds);

// Approximate NDF filtering (Eq. (9)).
// We clamp the kernel size to avoid overfiltering.
float KAPPA = 0.18;
float2 clampedKernelRoughness2 = min(kernelRoughness2, KAPPA);
float2 filteredRoughness2 = saturate(roughness2 + clampedKernelRoughness2);
return filteredRoughness2;
}

Listing 3. Practical approximation of our projected-space axis-aligned filtering (HLSL). This
implementation (with clamping) is the same as Kaplanyan et al.’s slope-space filtering, except
the red code is removed.
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ing error of our approximation for large kernels. However, it can be computationally
expensive for non-axis-aligned filtering, because it has to clamp the eigenvalues of
Σ⊥ using eigendecomposition. On the other hand, it is inexpensive for biased axis-
aligned filtering, since the eigenvalue is equal to the variance of the kernel for each
axis. The HLSL code of our axis-aligned filtering with this clamping approach is
shown in Listing 3.

5. Optimization for Deferred Rendering

5.1. NDF Filtering for Deferred Rendering

For deferred rendering, the use of halfvectors is not practical, because the inexpensive
derivative estimation is usable only in the pixel shader. In addition, light sources are
unknown for the G-buffer rendering pass. We also employ the approximation used for
deferred rendering from Kaplanyan et al. [2016]. This approximation uses an average
normal n̂ within the shading quad instead of the halfvector h for derivative estima-
tion by assuming the worst case for a distant light source and distant eye position as
follows:

Σ⊥ = σ2

[
∆n̂⊥u
∆n̂⊥v

]> [
∆n̂⊥u
∆n̂⊥v

]
,

where∆n̂⊥u and∆n̂⊥v are derivatives on the average normal n̂ on the projected space.
For a compact G-buffer, since a single scalar roughness parameter is often required,
Kaplanyan et al. [2016] proposed to use the maximum roughness of their rectangular
filter kernel. In this section, we discuss alternative options for the case of a single
scalar roughness. Using the projected-space derivatives from Section 4, we explore
simple isotropic filter kernels.

The computation cost of NDF filtering is typically not a bottleneck when ren-
dering a G-buffer that is dominated by a large memory transfer cost. However, the
NDF filtering technique for deferred rendering can also be desirable to use for for-
ward rendering in practical game engines [Unity Technologies 2018]. The reason
is that the computation cost of normal-based filtering is independent of the number
of light sources, and it supports any real-time approximation techniques for various
types of light sources (e.g., area lights and environment maps) as well as indirect il-
lumination. Therefore, simplification of NDF filtering is not only beneficial to reduce
the implementation cost, but also to improve the performance for in these practical
applications.

5.2. Constraint for Conservative Isotropic Filtering

In order to completely remove specular aliasing, the bandwidth of the isotropic ker-
nel must be conservatively wider than that of the tight anisotropic kernel (represented
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by the covariance matrix Σ⊥). Kaplanyan et al. [2016] used the maximum rough-
ness of a circumscribed rectangle to satisfy this constraint. On the other hand, this
conservative kernel bandwidth should be as tight as possible to reduce overfiltering.
Within this constraint and objective, the optimal kernel bandwidth can be obtained as
the maximum eigenvalue of the covariance matrix Σ⊥. Let λmax be the maximum
eigenvalue. In this case, the roughness of the filtered isotropic NDF is given by

ᾱ2 = α2 + min (2λmax, κ) , (10)

where α is the original roughness parameter for the isotropic NDF, and κ = 0.18

is the clamping threshold used in the Kaplanyan et al. [2016]’s axis-aligned filter-
ing to suppress the estimation error of derivatives. Although this eigenvalue λmax

can be calculated analytically, it is more expensive than the rectangular kernel-based
approach. Therefore, we propose another option that satisfies the above constraint.

5.3. Simple Conservative Filtering

Instead of the maximum eigenvalue λmax, we can employ the sum of the minimum
and maximum eigenvalues λmin +λmax for conservative isotropic filtering. This sum
is inexpensively obtained by the trace of Σ⊥ as follows:

λmax ≤ λmin + λmax = tr (Σ⊥) = σ2

(∥∥∥∆n̂⊥u

∥∥∥2
+
∥∥∥∆n̂⊥v

∥∥∥2
)
. (11)

5.4. Optimization for Norms of Derivatives

Kaplanyan et al. [2016] computed the average normal n̂ using the average within the
shading quad; in this paper we employ the average of two contiguous pixels for each
screen axis as follows:

n̂u =
n + n′u
‖n + n′u‖

, n̂v =
n + n′v
‖n + n′v‖

,

where n′u and n′v are normals at the neighboring pixels for each screen axis. For this
case, n̂u is on the great circle defined by n and n′u, and the angle between n and n̂u
is equal to the angle between n′u and n̂u. As shown in Figure 9, let this angle be θu,
then the norm of the derivative of n̂⊥u is given by∥∥∥∆n̂⊥u

∥∥∥ = 2 sin θu = ‖n− n′u‖.

The same relation is yielded for n, n′v, and n̂v. Since n−n′u and n−n′v are equivalent
to the derivatives of world-space normals ∆nu and ∆nv, we derive∥∥∥∆n̂⊥u

∥∥∥ = ‖∆nu‖,
∥∥∥∆n̂⊥v

∥∥∥ = ‖∆nv‖. (12)
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θuθu

n n′u

n̂u
2 sin θu

(a) Average of two normals

⇒

n

n̂u

n′u

n̂u

⇒

(b) Tangent space

θuθu

2 sin θu

(c) Derivative in tangent space

Figure 9. If the average normal n̂u is computed using two normals n and n′u of contiguous
pixels (a), the length of the estimated derivative of the average normals in tangent space (c) is
equal to the distance between n and n′u (i.e., length of the derivative of world-space normals).

5.5. Optimized Conservative Filtering

By substituting Equation (12) in Equation (11), we obtain the following equation:

λmin + λmax = σ2
(
‖∆nu‖2 + ‖∆nv‖2

)
.

Hence, our roughness for the filtered isotropic NDF is yielded as

ᾱ2 = α2 + min
(

2σ2
(
‖∆nu‖2 + ‖∆nv‖2

)
, κ
)
. (13)

Since this calculation uses world-space normals, the computation of the average nor-
mal and transformation into tangent space are unnecessary. Our implementation
(Listing 5) is simpler than computing the rectangular kernel-based maximum rough-
ness (Listing 4). In addition, since this roughness calculation is independent of tan-
gent vectors, it performs robustly even if objects do not have valid tangent vectors.
The visualization of the filtered roughness parameter is shown in Figure 10. For de-
ferred rendering, there are no large differences between our method and Kaplanyan et
al. [2016], while the proposed implementation is simpler.

5.6. Less Conservative Filtering

While conservative isotropic filtering removes specular aliasing, it induces overfil-
tering instead. Therefore, a smaller kernel than the conservative filtering might be
more practical, though underfiltering can occur. We found the arithmetic mean of
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float IsotropicNDFFiltering(float3 normal, float roughness2,
float3x3 tangentFrame, float2 pixelPosition) {

float SIGMA2 = 0.15915494;
float KAPPA = 0.18;
float2 neighboringDir = 0.5 - 2.0 * frac(pixelPosition * 0.5);
float3 deltaNormalX = ddx_fine(normal) * neighboringDir.x;
float3 deltaNormalY = ddy_fine(normal) * neighboringDir.y;
float3 avgNormal = normal + deltaNormalX + deltaNormalY;
float3 avgNormalTS = mul(tangentFrame, avgNormal);
float2 avgNormal2D = avgNormalTS.xy / abs(avgNormalTS.z);
float2 bounds = fwidth(avgNormal2D);
float maxWidth = max(bounds.x, bounds.y);
float kernelRoughness2 = 2.0 * SIGMA2 * (maxWidth * maxWidth);
float clampedKernelRoughness2 = min(kernelRoughness2, KAPPA);
float filteredRoughness2 = saturate(roughness2 + clampedKernelRoughness2);
return filteredRoughness2;
}

Listing 4. Previous conservative isotropic NDF filtering using the maximum width of the
rectangular kernel for deferred rendering (HLSL).

float IsotropicNDFFiltering(float3 normal, float roughness2) {
float SIGMA2 = 0.15915494;
float KAPPA = 0.18;
float3 dndu = ddx(normal);
float3 dndv = ddy(normal);
float kernelRoughness2 = 2.0 * SIGMA2 * (dot(dndu, dndu) + dot(dndv, dndv));
float clampedKernelRoughness2 = min(kernelRoughness2, KAPPA);
float filteredRoughness2 = saturate(roughness2 + clampedKernelRoughness2);
return filteredRoughness2;
}

Listing 5. Our conservative isotropic NDF filtering for deferred rendering (HLSL). The red
code is removed for our less conservative filtering.

-0.2

+0.2

(a) Kaplanyan et al. [2016] (b) Ours (Equation (13)) Difference: (a)−(b)

Figure 10. Visualization of roughness parameter ᾱ of the filtered isotropic NDF for deferred
rendering.
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eigenvalues can be used to balance underfiltering and overfiltering as follows:

ᾱ2 = α2 + min

(
2

(
λmin + λmax

2

)
, κ

)
= α2 + min

(
σ2
(
‖∆nu‖2 + ‖∆nv‖2

)
, κ
)
. (14)

6. Results

Here we present the results of NDF filtering for the GGX microfacet BRDF. Similar
results can be obtained for the Beckmann NDF, but we decided to focus on the GGX
NDF as the most challenging case. All images are rendered at 1920×1080 pixels
on an NVIDIA R© GeForce R© RTX 2080 GPU. The image quality is evaluated with
the root-mean-squared error (RMSE) metric and mean absolute error (MAE) metric.
In our experiments, reference images shown in Figure 11 are rendered using 16384
samples per pixel (spp). For these reference images, a Gaussian distribution with
σ2 = 1

2π is used for the pixel filter kernel. Rendering results using 1 spp without
NDF filtering are shown in Figure 12.

SPONZASPONZA

262 k triangles262 k triangles

BISTROBISTRO

814 k triangles814 k triangles

SAN MIGUELSAN MIGUEL

9.97 M triangles9.97 M triangles

Figure 11. Reference images in our experiments (16384 spp).

1 spp1 spp ReferenceReference 1 spp1 spp ReferenceReference 1 spp1 spp ReferenceReference

SPONZA BISTRO SAN MIGUEL
(RMSE: 1.06, MAE: 0.00748) (RMSE: 1.96, MAE: 0.0166) (RMSE: 1.10, MAE: 0.0128)

Figure 12. Closeups of rendered images without NDF filtering (1 spp).

Forward Rendering. Figures 13 and 14 demonstrate the improvements from the
slope-space approach for non-axis-aligned filtering and axis-aligned filtering, respec-
tively. For non-axis-aligned filtering, our projected-space filtering (Listing 1) reduces
both the RMSE and MAE significantly. Our non-axis-aligned filtering is higher qual-
ity than axis-aligned filtering in terms of the RMSE and MAE metrics, while some
pixels can still flicker in animation (please see the supplemental video). For such
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Reference (a) Previous (b) Ours (c) Ours (approximation)

SPONZA

RMSE: 573.6RMSE: 573.6
MAE: 0.643MAE: 0.643

RMSE: 0.247RMSE: 0.247
MAE: 0.00409MAE: 0.00409

RMSE: 0.247RMSE: 0.247
MAE: 0.00409MAE: 0.00409

0

0.1

E
rror

BISTRO

RMSE: 1055.4RMSE: 1055.4
MAE: 0.910MAE: 0.910

RMSE: 0.247RMSE: 0.247
MAE: 0.00675MAE: 0.00675

RMSE: 0.247RMSE: 0.247
MAE: 0.00675MAE: 0.00675

0

0.1

E
rror

SAN MIGUEL

RMSE: 12631.7RMSE: 12631.7
MAE: 9.73MAE: 9.73

RMSE: 0.134RMSE: 0.134
MAE: 0.00651MAE: 0.00651

RMSE: 0.134RMSE: 0.134
MAE: 0.00653MAE: 0.00653

0

0.1

E
rror

Figure 13. Quality comparison of non-axis-aligned filtering for forward rendering. Images
are closeups of rendering results and the error from the reference. Compared to previous
slope-space filtering (a), our projected-space filtering (b) and its approximation (c) reduce
errors at grazing angles significantly.

dynamic scenes, biased axis-aligned filtering is more practical because of the tem-
poral stability. Even for this axis-aligned filtering, our method avoids undesirable
artifacts on grazing angles and reduces the MAE. Our practical approximation (List-
ings 2 and 3) produces almost the same results as our projected-space filtering, while
the implementation is simpler than both slope-space and projected-space approaches.
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Reference (a) Previous (b) Ours (c) Ours (approximation)

SPONZA

RMSE: 0.281RMSE: 0.281
MAE: 0.00698MAE: 0.00698

RMSE: 0.279RMSE: 0.279
MAE: 0.00540MAE: 0.00540

RMSE: 0.279RMSE: 0.279
MAE: 0.00540MAE: 0.00540

0

0.1

E
rror

BISTRO

RMSE: 0.264RMSE: 0.264
MAE: 0.01017MAE: 0.01017

RMSE: 0.261RMSE: 0.261
MAE: 0.00801MAE: 0.00801

RMSE: 0.261RMSE: 0.261
MAE: 0.00803MAE: 0.00803

0

0.1

E
rror

SAN MIGUEL

RMSE: 0.172RMSE: 0.172
MAE: 0.01052MAE: 0.01052

RMSE: 0.169RMSE: 0.169
MAE: 0.00770MAE: 0.00770

RMSE: 0.169RMSE: 0.169
MAE: 0.00771MAE: 0.00771

0

0.1

E
rror

Figure 14. Quality comparison of axis-aligned filtering for forward rendering. Images are
closeups of rendering results and the error from the reference. Our projected-space filtering
(b) and its approximation (c) produce smaller MAE than previous slope-space filtering (a).

Deferred Rendering. In addition to the improvements of forward rendering, we pro-
pose a simplification of isotropic NDF filtering for deferred rendering. Our algorithm
is shown in Listing 5, while the previous algorithm is provided in Listing 4. The
quality comparison of these methods is shown in Figure 15. NDF filtering using
the maximum eigenvalue (Equation (10)) has the smallest error in the constraint of
conservative filtering in theory. The proposed conservative filtering (Equation (13))
produces slightly smaller error than the previous method, while our implementation
is much simpler than the previous method and the above optimal approach. These
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Reference Previous Max. eigenvalue Sum of eigenvalues Mean eigenvalue
[Kaplanyan et al. 2016] (Eq. 10) (Eq. 13) (Eq. 14)

SPONZA

RMSE: 0.453RMSE: 0.453
MAE: 0.01052MAE: 0.01052

RMSE: 0.436RMSE: 0.436
MAE: 0.00985MAE: 0.00985

RMSE: 0.445RMSE: 0.445
MAE: 0.01008MAE: 0.01008

RMSE: 0.396RMSE: 0.396
MAE: 0.00844MAE: 0.00844

0

0.1

E
rror

BISTRO

RMSE: 0.532RMSE: 0.532
MAE: 0.0159MAE: 0.0159

RMSE: 0.506RMSE: 0.506
MAE: 0.0150MAE: 0.0150

RMSE: 0.509RMSE: 0.509
MAE: 0.0153MAE: 0.0153

RMSE: 0.470RMSE: 0.470
MAE: 0.0132MAE: 0.0132

0

0.1

E
rror

SAN MIGUEL

RMSE: 0.272RMSE: 0.272
MAE: 0.0148MAE: 0.0148

RMSE: 0.259RMSE: 0.259
MAE: 0.0141MAE: 0.0141

RMSE: 0.264RMSE: 0.264
MAE: 0.0143MAE: 0.0143

RMSE: 0.235RMSE: 0.235
MAE: 0.0126MAE: 0.0126

0

0.1
E

rror

Figure 15. Quality comparison of isotropic NDF filtering for deferred rendering (closeups).
Our less conservative filtering using the mean of eigenvalues (rightmost) produces the lowest
RMSE and MAE in this experiment, while its implementation is the simplest.

techniques are conservative to avoid underfiltering, but they induce overfiltering in-
stead. Our less conservative filtering (Equation (14)) reduces the error by balancing
overfiltering and underfiltering. While less conservative filtering can produce aliasing
artifacts slightly more than conservative filtering, it alleviates the change of material
appearance caused by overfiltering (please see the supplemental video).

Performance. Table 2 shows the computational time for forward shading at 8K reso-
lution (7680×4320 pixels) on the NVIDIA R© GeForce R© RTX 2080 GPU. Our method
is not only applicable to high-end GPUs but also low power consumption platforms
such as mobile devices. For such mobile applications, we also show the forward shad-
ing time for low-polygon scenes at 1920×1080 pixels on an Intel R© Iris R© Plus graph-

51

http://jcgt.org


Journal of Computer Graphics Techniques
Stable Geometric Specular Antialiasing with Projected-Space NDF Filtering

Vol. 10, No. 2, 2021
http://jcgt.org

SPONZA BISTRO SAN MIGUEL
(261 k tris) (814 k tris) (9.97 M tris)

No NDF filtering 0.93 1.07 2.95
Previous 1.45 1.54 3.42

Non-axis-aligned filtering Ours 1.51 1.60 3.47
Ours (approx) 1.44 1.54 3.41
Previous 1.38 1.48 3.36

Axis-aligned filtering Ours 1.38 1.49 3.36
Ours (approx) 1.36 1.46 3.33
Previous 1.47 1.57 3.44

Normal-based Max (Eq. (10)) 1.54 1.63 3.50
isotropic filtering Sum (Eq. (13)) 1.05 1.18 3.04

Mean (Eq. (14)) 1.05 1.18 3.04

Table 2. Forward shading time (ms) at 8K resolution (NVIDIA R© GeForce R© RTX 2080 GPU).

ics (integrated in an Intel R© CoreTM i5-1035G7 processor) in Table 3. As described
in Section 5.1, since normal-based isotropic filtering for deferred rendering can also
be used for forward rendering, this paper also evaluates the normal-based filtering
for forward rendering. For non-axis-aligned and axis-aligned filtering, although the
computation time of our projected-space filtering is slightly larger than the previous
slope-space filtering, the approximated version of our method is almost the same as
or slightly faster than the previous method. This is because our derivative estimation
is simpler than the previous method. For normal-based isotropic NDF filtering, con-
servative filtering using the maximum eigenvalue is more expensive than the previous
rectangular kernel-based approach. On the other hand, our simple filtering techniques
using the sum of eigenvalues and mean of eigenvalues are significantly faster than the
previous method, while they produce less error. The performance improvement of

SPONZA BISTRO
(261 k tris) (814 k tris)

No NDF filtering 1.29 3.77
Previous 1.79 4.28

Non-axis-aligned filtering Ours 1.86 4.33
Ours (approx) 1.78 4.24
Previous 1.76 4.23

Axis-aligned filtering Ours 1.78 4.26
Ours (approx) 1.73 4.21
Previous 1.87 4.35

Normal-based Max (Eq. (10)) 1.92 4.39
isotropic filtering Sum (Eq. (13)) 1.37 3.84

Mean (Eq. (14)) 1.37 3.84

Table 3. Forward shading time (ms) at 1920×1080 pixels (Intel R© Iris R© Plus graphics).
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our simplification is effective when shaders are ALU bound. In this experiment, the
computational overhead of our method is about 0.5 ms for non-axis-aligned filtering,
about 0.4 ms for axis-aligned filtering, and about 0.1 ms for normal-based isotropic
filtering.

7. Limitations

Our method is built upon Kaplanyan et al. [2016]’s work and inherits the usual limita-
tions of this previous work. NDF filtering addresses only the aliasing caused by spec-
ular highlights, and aliasing caused by geometric discontinuities cannot be handled by
this method. Real-time approximation of the pixel footprint introduces bias. In addi-
tion, the filtering of the GGX NDF is approximated by assuming a Gaussian distribu-
tion in the filtering space, therefore the GGX highlights can be overblurred due to this
approximation. The method requires high-quality tangent frames. However, for our
isotropic filtering, this limitation is reduced to high-quality shading normals. Unlike
the previous method, our method is derived by assuming the GGX NDF. Therefore,
the proposed filtering can have approximation error for the Beckmann NDF at grazing
halfvectors. However, it is usually not a problem because aliasing is small for grazing
halfvectors.

8. Conclusions

In this paper we have presented an error-reduction technique for NDF filtering. The
rough derivative estimation produces a significant numerical error, since the error is
increased due to the projection into slope space. To suppress this increase of the error,
this paper introduces an orthographically projected space for NDF filtering whose fil-
ter kernel is narrower for a shallower halfvector angle. A practical approximation of
this projected-space NDF filtering was also presented. Our approximation is simply
implemented by estimating derivatives of a projected halfvector instead of a slope-
space halfvector. In addition, we presented optimized isotropic NDF-filtering tech-
niques for deferred and forward rendering based on this derivative estimation. Our
method reduces the error as well as simplifies the shader code for geometric specular
antialiasing.
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A. Microsurface Model with Non-axis-aligned Anisotropy

A.1. Masking-shadowing Function

The Smith masking function [1967] is defined asG1(i,h) = χ+(i·h)
1+Λ(i) . Λ(i) is a function which

depends on the NDF model. The height-correlated masking-shadowing function [Heitz 2014]
is given as

G2(i,o) =
χ+ (i · h)χ+ (o · h)

1 + Λ(i) + Λ(o)
.

In this paper, Λ(o) for the anisotropic GGX NDF model is described in the later subsections.

A.2. Axis-Aligned Anisotropic GGX Model

The axis-aligned anisotropic GGX NDF is defined as follows:

D(h) =
χ+ (hz)

παxαy

(
h2
x

α2
x

+
h2
y

α2
y

+ h2
z

)2 .

For this NDF, the masking-shadowing function is obtained using the following function:

Λ(o) = −0.5 +

√
α2
xo

2
x + α2

yo
2
y + o2

z

2|oz|
,

where [ox, oy, oz] is the outgoing direction o in tangent space.

A.3. Non-axis-aligned Anisotropic GGX Model

For specular antialiasing, we use the 2 × 2 roughness matrix A instead of αx and αy . The
anisotropic NDFs can be generalized using this matrix as described in Section 2.1. For the
non-axis-aligned anisotropic GGX NDF, the masking-shadowing function is obtained using
the following function:

Λ(o) = −0.5 +

√
[ox, oy]A[ox, oy]> + o2

z

2|oz|
.

For this microsurface model, the slope of a microsurface is stretched in the directions of the
eigenvectors of the roughness matrix A. The stretching scale for each eigenvector is the
reciprocal square root of the eigenvalue of A.

A.4. Practical Implementation for the NDF

The determinant det(A) can produce a large precision error due to floating-point arithmetic,
especially when using an elongated kernel for NDF filtering. To improve the numerical sta-
bility, our method clamps det(A) to a small value τ for the NDF:

D(h) =
χ+ (hz)

π
√

max (det(A), τ) ([hx, hy]A−1[hx, hy]> + h2
z)

2 .

To compute A−1, we also use this clamped determinant as follows:

A−1 =
adj(A)

max (det(A), τ)
.
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(a) Gaussian filter
(σ2 = 0.25)

(b) Gaussian filter
(σ2 = 1

2π
)

(c) Box filter

�

���

�

���� �� ���� � ��� � ���

(a)
(b)
(c)

Figure 16. Supersample antialiasing with different pixel filter kernels. The right most is the
plots of the kernels. Compared to the Gaussian filter with σ2 = 0.25 (a), the Gaussian filter
with σ2 = 1

2π (b) has less overblurring and is visually closer to the box filter (c).

For NDF filtering, since det(Ā) must be equal or greater than the determinant of the original

roughness matrix A =
[
α2
x 0

0 α2
y

]
, we use τ = det(A) = α2

xα
2
y to clamp det(Ā).

B. Parameter Settings

While previous work [Kaplanyan et al. 2016; Tokuyoshi and Kaplanyan 2019] used σ2 =

0.25, this paper uses σ2 = 1
2π by assuming the pixel filter kernel is a Gaussian distribution

whose peak is 1. For supersampling, we found this pixel filter kernel has less overblurring
and visually closer to the box filter than σ2 = 0.25 as shown in Figure 16. This parameter
setting can also reduce the overfiltering error for our specular antialiasing.

C. Derivation of the Jacobian Matrix

Let ψx be an angle on the great circle passing through the halfvector h and normal n, and ψy
be an angle on the great circle passing through the halfvector h and n×h

‖n×h‖ ; then its Cartesian
coordinate is given as

mx = cosψy sinψx,

my = sinψy,

mz = cosψy cosψx.

Thus, the Jacobian matrix of the transformation from [ψx, ψy] to [mx,my] at ψx = 0 and
ψy = 0 is given as

J◦→⊥m =

[
∂mx
∂ψx

∂mx
∂ψy

∂my
∂ψx

∂my
∂ψy

]
=

[
cosψy cosψx − sinψy sinψx

0 cosψy

]
=

[
1 0

0 1

]
.

The tangent-space halfvector can be represented using a polar-coordinate system [θ, φ]. Using
this θ and this φ, the rotation from the local-space halfvector to tangent-space halfvector is
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given by hxhy
hz

 =

cos θ cosφ − sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

− sin θ 0 cos θ

mx

my

mz

 ,
where [mx,my,mz] = [0, 0, 1] (i.e., ψx = 0 and ψy = 0). Therefore, the Jacobian matrix of
the orthographic projection is derived as

J◦→⊥ = J⊥m→⊥J◦→⊥m =

[
∂hx
∂mx

∂hx
∂my

∂hy
∂my

∂hy
∂my

] [
1 0

0 1

]
=

[
cos θ cosφ − sinφ

cos θ sinφ cosφ

]
=

1√
1− h2

z

[
hxhz −hy
hyhz hx

]
.

The slope of the halfvector is given as

h‖x = − hx√
1− h2

x − h2
y

, h‖y = − hy√
1− h2

x − h2
y

.

Therefore, the Jacobian matrix of the transformation from the projected unit disk to slope
space is as follows:

J⊥→‖ =

∂h‖
x

∂hx

∂h‖
x

∂hy
∂h‖

y

∂hx

∂h‖
y

∂hy

 = − 1

h3
z

[
1− h2

y hxhy
hxhy 1− h2

x

]
.

Hence, the Jacobian matrix of the transformation from spherical space to slope space is ob-
tained as

J◦→‖ = J⊥→‖J◦→⊥ = − 1

h2
z

√
1− h2

z

[
hx −hyhz
hy hxhz

]
.

D. Optimization of Roughness Mapping Implementation

For our projected-space filtering, we optimize the implementation of roughness mapping by
rewriting Equation (7) into the following equation:

Ā =
(
B̄−1 + I

)−1
=

adj
(

adj(B̄)

det(B̄)
+ I
)

det
(

adj(B̄)

det(B̄)
+ I
) =

B̄
det(B̄)

+ I

det
(

B̄
det(B̄)

+ I
) .

Using this equation, we eliminate the computation of adjugate matrices from our implemen-
tation (Listing 1).

Index of Supplemental Materials

The videos for our method can be found at http://jcgt.org/published/0010/02/
02/video.mp4.
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