Unbiased VNDF Sampling for Backfacing Shading Normals (Supplementary
Document)

Yusuke Tokuyoshi, AMD Japan Ltd.

1 Derivation of the Smith Normalization Factor

This section derives closed-form solutions for the following normal-
ization factor:

G(i,m) _ |i-m|
HG) fsz D(m) max(i - 0, 0)do

X' (i m). ()]

The NDF D(m) is expressed using a slope distribution P,,(x(m), y(m))
as follows:

Olx(m), y(m)] ‘
om ’

where ||0[x(m), y(m)]/dm|| = 1/(m - n)® is the Jacobian for the
transformation between the microfacet normal m and its slope
[x(m), y(m)]. Using this slope distribution, fsz D(®w) max(i - m,0)dm
can be rewritten into the following slope-space integral [Heil4]:

D(m)(m - n) = Py (x(m), y(m))y " (m - n)

cot 6
f D(mw) max(i - ®,0)dw = f (cos 6 — xsin) P,(x)dx, 2)
s2 -

00

where cosf =i-n =i, and P,(x) = fr« P(x,y)dy.

Smith-GGX Model. For the GGX NDF [WMLTO07], the slope-
space distribution is the following bivariate elliptical distribution:

1
7 VIAT (Lx, yIA [,y + 1)

where A is a positive semi-definite 2 X 2 matrix whose eigenvalues are
[@%, @?], and eigenvectors are tangent and binormal vectors. For this
distribution, P,(x) is given by

Py(x,y) =

2

Pa(x) = fpzz(X, ydy =
R

2a? +)3

where o® = (a3i} + }i3)/(i% + i) is the squared roughness projected
onto the x-axis. Substituting this P,(x) into Eq. (2), we yield

f“m a’(cos 6§ — xsin b)
—dx

f D(w) max(i - o, 0)dow

3
S 00 2(a? + x2)2
_ cosf+ Va?sin’ 0+ cos? 6
= 5)
Since cos @ = i, and a? sin® @ = a2 + a2i2, we obtain
; [22 + 22 + 2
. i+ (|22 + Q22 + 12
D(w) max(i - 0, 0)do = .
52 2

Substituting this equation into Eq. (1), we yield the normalization fac-
tor for the Smith—-GGX model:

GGi,m) _ 212 S iem]

H(i) i 212 4 Q272 4 2
i+ \Jaiis + ogis + 0

Smith-Beckmann Model. The slope-space distribution of the
Beckmann NDF [BS63] is a bivariate Gaussian:

1
VAl

For this distribution, P,(x) is a 1D Gaussian distribution:

1 x _x2
a2 P\ma2)

Substituting this P,(x) into Eq. (2), we yield

cosf — xsin@ x? d
— exp|-—|dx
. Vra? P a?

cotfd asinf cot? §
cos ferfc (_T) + S5 exp (—7)

2
5 >

Py(x,y) = exp (~[x, yJA ™ [x,y]7).

Pa(x) = fpzz(xa ydy =
R

cot §

f D(w) max(i - w,0)dow =
S2

ol

ierfc (_\l/_E) + \/gexp (—

where B = a?sin’ 6 = a%i2 + a2i2. Substituting this equation into
Eq. (1), we yield the normalization factor for the Smith—-Beckmann
model:

GGi,m) _ 2Jic|

H(i) i.erfc (—\’—@) + \/gexp (—%)

x (G-m) |

2 The V-Cavity Model for Shading Normals

V-cavity microsurface is formed by a set of symmetric V-grooves
(Fig. 1). Similar to the Smith model, we assume that V-cavity mi-
crofacets are single sided. This assumption does not affect the mask-
ing function for frontfacing shading normals, because backfacing mi-
crofacets are fully masked by frontfacing microfacets (Fig. 1b). On
the other hand, our assumption makes frontfacing microfacets visible
from below the horizon (Figs. 1c and 1d).

2.1 Masking Function

Previous work considered two masking configurations: one in which
both sides of V-cavity are frontfacing and fully visible (Fig. 1a), and
one in which only one side of V-cavity is frontfacing (Fig. 1b). These
two configurations are expressed in a single formula:

2/m - n|fi- n|
li-m|

In addition to the above two configurations, we consider three more
configurations for backfacing shading normals. The first one is that
only one side of V-cavity is frontfacing and partially masked by other

G@i,m) = min(,1))(* (i-m). 3)

mailto:yusuke.tokuyoshi@amd.com

AV YA VAR VAVAVIR T VA YD 70 70 AV AV

(a) Fully visible (b) Partially masked

(c) Partially masked

(d) Unmasked and partially visible (e) Fully invisible

Figure 1: Masking configurations for our single-sided V-cavity model. Orange arrows are incident direction i. Frontfacing microfacets (green) are
visible not only from above the horizon (a, b), but also below the horizon (c, d).

frontfacing microfacets (Fig. 1¢). The second one is that only one side
of V-cavity is frontfacing and not masked (Fig. 1d). The third one is
that both sides of V-cavity are backfacing and fully invisible (Fig. le).
Unlike the Smith model, the microsurface visibility for backfacing
shading normals is given from these three configurations, and it results
in the same form as Eq. (3).

2.2 Hit Probability

The hit probability H(i) is obtained from the masking function (Eq. 3)
and NDF. Closed-form solutions for this hit probability is available for
the GGX and Beckmann NDFs as follows:

For the GGX NDF
. 1 ifi-m>0
H(i) = - \/agigmg,gw;i; VAR AR e
For the Beckmann NDF

ifi-n>0

L
otherwise

1
H() = {1 4 exp(—9u?)-exp(-1?) 4 derfGu—erf(w)
2 \/ru 2

iz

Vrr%i%+a§[%

2.3 'VNDF Sampling Routine

where u =

While V-cavity VNDF sampling for frontfacing shading normals is in-
dependent from NDF models [Hd14], sampling for backfacing shad-
ing normals depends on an NDF model. The PDF for backfacing
shading normals has different forms bordering on the slope 3 cot 8 as
follows:

D) if x(m) < 3 cot 6
.+ —) D(m)(i-m) :
p(m;i) = o if 3cotf < x(m) < cotf . “4)
0 otherwise

Therefore, we first choose stochastically whether a sample micro-
facet slope x(m) exceeds 3 coté or not. Then, we sample a micro-
facet normal according to the chosen PDF form. The probability that
x(m) < 3cotd is given by the integral of the PDF in this case as fol-
lows:

3cotd
2 P>(x)dx
2L Pods

fsz X" (3 cotf — x(w)p(e; Hdw = H(i)

If x(m) < 3 cot 6, we sample a microfacet m according to D(m)(m - n)
with the limited range x(m) € (—o0,3 cotd). For x(m) > 3 cot#, the

PDF is proportional to the VNDF of the Smith model. Therefore,
we sample a microfacet by limiting the range of Smith VNDF sam-
pling [Heil8, Jak14] to x(m) € [3 cotd, cot 6) for this case.

Listing 1 shows our VNDF sampling routine for the V-cavity

model. FrontfacingProportion(boundary, roughness) computes
3 cotf . . .
o P(x)dx which is given by
3 cotf 1 k.
f Py(x)dx = 3 + - for the GGX NDF,
- 2 a2 + a2k? + k2
3 cotd 1 k.
f P(x)dx = —erfc|— = for the Beckmann NDF.

S 2 [2ic + a2k

where [k, ky, k] = [ix, iy,3iz] is the normal of the boundary surface
(i.e., boundary). For the GGX NDF, SampleNormal and SampleUn-
maskedNormal routines are shown in Listings 2 and 3 which are based
on a Smith—-GGX VNDF sampling routine [Heil8]. For the Beckmann
NDF, we employ slope-space sampling [Hd14] shown in Listings 4
and 5. To sample a slope by solving the inverse cumulative distri-
bution function, we use the Newton’s method based on Jakob’s ap-
proach [Jak14]. Although the original Jakob’s sampling routine used
the bisection method in addition to the Newton’s method, we omit-
ted the bisection method similar to Mitsuba 2 [NDVZJ19]. Listing 6
shows our slope sampling routine using the Newton method.

Listing 1: HLSL-like pseudo code of our VNDF sampling for the V-
cavity model.

float3 SampleVisibleNormal(float ul, float u2, float u3, float2
roughness, float3 dir) {
if (dir.z >= 0.0) {
// Existing V-cavity VNDF sampling for frontfacing shading normals
[Heitz and d'Eon 2014].
float3 normall = SampleNormal(ul, u2, roughness, float2(0.0, 0.0),
1.0);
float3 normal2 = {-normall.x, -normall.y, normall.z}
float al = max(dot(dir, normall), 0.0);
float a2 = max(dot(dir, normal2), 0.0);
float probability = al / (al + a2);
return u3 < probability ? normall : normal2;
} else {
// Normal of the boundary surface between two PDF forms
float3 boundary = {dir.x, dir.y, 3.0 * dir.z}

// Probability that a sample slope is less than the boundary.
float s = FrontfacingProportion(boundary, roughness);
float probability = 2.0 * s / HitProbability(dir);

if (ul < probability) {
// Sampling according to a PDF proportional to D(m)*dot(m, n).
return SampleNormal (ul / probability, u2, roughness, dir.xy, s);
} else {
// Sampling according to a PDF proportional to D(m)*dot(i, m).
return SampleUnmaskedNormal ((ul - probability) / (1.0 -
probability), u2, roughness, dir);

}

}

}

Listing 2: Sampling according to p(m; i) cc D(m)(m - n) for the GGX
NDF. To limit the sampling range, this implementation is based on
the Smith-GGX VNDF sampling routine [Heil8], and changes the
projection direction from an incident direction to the shading normal
(written in red).

float3 SampleNormal (float ul, float u2, float2 roughness, float2 dir,
float s) {

// Stretch the incident direction.

float2 d = dir * roughness;

// Sample a point on the disk.

float radius = sqrt(ul);

float phi = 2.0 * M_PI * u2;

float x = radius * cos(phi);

float t = radius * sin(phi);

float y = lerp(sqrt(l.0 - x * x), t, s);

// Build an orthonormal basis.

// The disk is perpendicular to [0, 0O, 1].

float lensq = d.x * d.x + d.y * d.y;

float2 axisY = lensq != 0.0 ? d / sqrt(lensq) : float2(0.0, 1.0);
float2 axisX = {axisY.y, -axisY.x};

// Project the sample point onto a sphere.
float z = sqrt(max(1.0 - x * x -y *y, 0.0));
float3 n = float3(axisX * x + axisY * y, z);

// Unstretch and normalize the microfacet normal.
return normalize(float3(n.xy * roughness, n.z));

float y = -erfinv(2.0 * u2 - 1.0);

// Build an orthonormal basis.

float lensq = d.x * d.x + d.y * d.y;
float2 axisX = lensq != 0.0 ? d / sqrt(lensq) : float2(1.0, 0.0);
float2 axisY = {-axisX.y, axisX.x};

// Transform the sampled slope.

float2 n = axisX * x + axisY * y;

// Unstretch and normalize the microfacet normal.
return normalize(float3(n * roughness, 1.0));

Listing 5: Sampling according to p(m;i) cc D(m)(i - m) based on the
Smith—-Beckmann VNDF sampling routine [Hd14]. This implementa-
tion limits the sampling range using slopeMin (written in red).

Listing 3: Sampling according to p(m;i) cc D(m)(i - m) based on the
Smith—-GGX VNDF sampling routine [Heil8]. This implementation
modifies the upper limit of the sampling range (written in red).

float3 SampleUnmaskedNormal(float ul, float u2, float2 roughness,
float3 dir) {

// Stretch and normalize the incident direction.

float3 axisZ = normalize(float3(dir.xy * roughness, dir.z));

// Compute the limit angle of the sampling range: psi = acot(3cot(
theta)) .

float sinTheta = length(axisZ.xy);

float psi = atan(sinTheta / (3.0 * axisZ.z));

// cos(theta - psi) = cos(theta) * cos(psi) + sin(theta) * sin(psi).
float limit = axisZ.z * cos(psi) + sinTheta * sin(psi);

// Sample a point on the disk.
float radius = sqrt(ul);

float phi = 2.0 * M_PI * u2;
float x = radius * cos(phi);

float t = radius * sin(phi);
float s = (1.0 + limit) / 2.0;
float y = lerp(sqrt(l1.0 - x * x), t, s);

// Build an orthonormal basis.

// The disk is perpendicular to axisZ.

float lensq = axisZ.x * axisZ.x + axisZ.y * axisZ.y;

float3 axisX = lensq != 0.0 ? float3(-axisZ.y, axisZ.x, 0.0) / sqrt(
lensq) : float3(1.0, 0.0, 0.0);

float3 axisY = cross(axisZ, axisX);

// Project the sample point onto a sphere.
float z = sqrt(max(l.0 - x * x -y *y, 0.0));
float3 n = axisX * x + axisY * y + axisZ * z;
// Unstretch and normalize the microfacet normal.

return normalize(float3(n.xy * roughness, n.z));

float3 SampleUnmaskedNormal(float ul, float u2, float2 roughness,
float3 dir) {

// Stretch and normalize the incident direction.

float3 d = normalize(float3(dir.xy * roughness, dir.z));

// Compute a lower limit of the sampling range: 3cot(theta).
float sinTheta = length(d.xy);
float slopeMin = 3.0 * d.z / sinTheta;

// Sample a slope.
float2 p = -SampleVisibleSlope(ul, u2, sinTheta, d.z, slopelMin);

// Build an orthonormal basis.

float lensq = d.x * d.x + d.y * d.y;

float2 axisX lensq !'= 0.0 ? d.xy / sqrt(lensq) : float2(1.0, 0.0);
float2 axisY {-axisX.y, axisX.x};

// Transform the sampled slope.
float2 n = axisX * p.x + axisY * p.y;

// Unstretch and normalize the microfacet normal.
return normalize(float3(n * roughness, 1.0));

}

Listing 6: HLSL-like pseudo code of our visible slope sampling for
the Beckmann NDF. The main difference from the existing sampling
routine is specification of the lower limit written in red.

Listing 4: Sampling according to p(m; i) cc D(m)(m - n) for the Beck-
mann NDF. Unlike the Box-Muller’s method, this implementation
uses the inverse error function for each slope axis to limit the sam-
pling range using s (written in red).

float3 SampleNormal (float ul, float u2, float2 roughness, float2 dir,
float s) {

// Stretch the incident direction.

float2 d = dir * roughness;

// Sample a slope.
float x = -erfinv(2.0 * ul * s - 1.0);

float2 SampleVisibleSlope(float ul, float u2, float sinTheta, float
cosTheta, float slopeMin) {

// Compute the upper limit cot(theta).

float slopeMax = cosTheta / sinTheta;

// Search interval (in the erf() domain).
float xmin = erf(slopeMin);
float xmax = erf(slopeMax);

// Start with a good initial guess based on Mitsuba 2.
float x = xmax - (1.0 + xmax) * erf(sqrt(-log(max(ul, FLT_MIN))));

// Normalization and offset for the CDF.

float SQRT_PI_INV = 0.56418958354775628694807945156077f;

float tanTheta = sinTheta / cosTheta;

float cmax = xmax + SQRT_PI_INV * tanTheta * exp(-slopeMax *
slopeMax);

float cmin = xmin + SQRT_PI_INV * tanTheta * exp(-slopeMin *
slopeMin);

float target = ul * (cmax - cmin) + cmin;

// The number of steps is fixed to three for the simplicity.

for (int i = 0; i < 3; ++1i) {

// Evaluate the CDF and its derivative.

float erfinvX = erfinv(x);

float value = x + SQRT_PI_INV * tanTheta * exp(-erfinvX * erfinvX)

- target;
float derivative = 1.0 - tanTheta * erfinvX;
x -= value / derivative;

}

float xm = erfinv(x);
float ym = erfinv(2.0 * u2 - 1.0);

return float2(xm, ym);

RMSE: 0.0153

RMSE: 0.0054

RMSE: 0.0289

RMSE: 0.0054

RMSE: 0.0110

Ours (213 s) RMSE: 0.0054

Error 22

Error 22

(a) Smith-Beckmann model

+0.2

(b) V-cavity—-GGX model

+0.2

(c) V-cavity—Beckmann model

/ Interalf VNDF

Integral of VNDF

Figure 2: Path tracing using VNDF sampling with previous normalization and our normalization for a normal-mapped scene (2048 samples/pixel,
CPU: AMD Ryzen™ 7 3800X). Our normalization avoids a brightening bias caused by the VNDF integral being less than one.

3 Experimental Results

Fig. 2 shows rendering results and visualizations of the error and the
VNDF integral for the Smith—-Beckmann BRDF (2a), V-cavity—-GGX
BRDF (2b), and V-cavity—Beckmann BRDF (2c). To compute sample
directions for the Smith—-Beckmann model, we employ the Newton’s
method based on Jakob’s sampling routine [Jak14]. Our normalization
avoids a brightening bias caused by the VNDF integral being less than
one.

Acknowledgments

Normal maps are generated from Crytek Sponza’s textures down-
loaded from M. McGuire’s Computer Graphics Archive. We would
like to thank F. Meinl and E. Bischoff for the Crytek Sponza model.

References

[BS63] Petr Beckmann and André Spizzichino. Scattering of
Electromagnetic Waves from Rough Surfaces. MacMil-

lan, 1963.

[Hd14]

[Heil4]

[Heil8]

[Jak14]

[NDVZJ19]

[WMLT07]

Eric Heitz and Eugene d’Eon. Importance sampling
microfacet-based BSDFs using the distribution of visible
normals. Comput. Graph. Forum, 33(4):103-112, 2014.

Eric Heitz. Understanding the masking-shadowing func-
tion in microfacet-based BRDFs. J. Comput. Graph.
Tech., 3(2):48-107, 2014.

Eric Heitz. Sampling the GGX distribution of visible
normals. J. Comput. Graph. Tech., 7(4):1-13, 2018.

Wenzel Jakob. An improved visible normal sampling
routine for the Beckmann distribution. Technical report,
ETH Ziirich, Aug 2014.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and
Wenzel Jakob. Mitsuba 2: A retargetable forward and
inverse renderer. ACM Trans. Graph., 38(6), 2019.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and
Kenneth E. Torrance. Microfacet models for refraction
through rough surfaces. In EGSR ’07, pages 195-206,
2007.

©2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, Ryzen and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

https://casual-effects.com/data

	Derivation of the Smith Normalization Factor
	The V-Cavity Model for Shading Normals
	Masking Function
	Hit Probability
	VNDF Sampling Routine

	Experimental Results

