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1 Derivation for the Jacobian Matrix J

Stam [2001] derived the Jacobian matrix for the transformation between halfvectors and light directions on a tangent

plane by assuming that the view direction i is aligned with the 𝑥-axis of the plane. At h = n, it is given by

J⊥ =


1

2(i·h) E for reflection

𝜂

(i·h)+𝜂 (o·h) E for refraction

,

where 𝜂 ∈ (0,∞) is the relative refractive index. By orthographically projecting the light direction o onto the plane, we

get the Jacobian matrix for the transformation between halfvectors and light directions on the unit sphere:

J∨ = J⊥

[
|o · h| 0

0 1

]
.

where we assume that the 𝑥-axis of the plane is aligned with i − o. To extend this Jacobian matrix for arbitrary i, h,
and o, we transform the plane perpendicular to h into the tangent space. We first rotate the plane to align the 𝑥-axis

with h − n, and then project it onto the tangent plane. After that, we rotate it to align the tangent space. With these

transformations, we obtain the following Jacobian matrix:

J =

[
cos𝜙ℎ − sin𝜙ℎ

sin𝜙ℎ cos𝜙ℎ

]
︸                   ︷︷                   ︸

rotation

[
| cos𝜃ℎ | 0

0 1

]
︸           ︷︷           ︸
projection to

tangent plane

[
cos𝜓 − sin𝜓

sin𝜓 cos𝜓

]
︸                ︷︷                ︸

rotation

J∨ .

where [𝜃ℎ, 𝜙ℎ] ∈ R2
is the polar coordinates of the tangent-space halfvector (i.e., cos𝜃ℎ = ℎ𝑧 ), and𝜓 ∈ R is the angle

between n × h and i × o. If h = n, we use [cos𝜙ℎ, sin𝜙ℎ] = [𝑖𝑥 , 𝑖𝑦]/∥ [𝑖𝑥 , 𝑖𝑦] ∥ and𝜓 = 0 as in the case where i, o, h, and
n are on the same great circle.

2 Non-Axis-Aligned Anisotropic Microfacet BRDFs

The microfacet bidirectional reflectance distribution function (BRDF) model [Cook and Torrance 1982] is defined as

𝑓 (i, o) = 𝐹 (i · h)𝐺2 (i, o, h)𝐷 (h)
4|i · n| |o · n| ,
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where 𝐹 (i · h) ∈ [0, 1] is the Fresnel factor, 𝐺2 (i, o, h) ∈ [0, 1] is the masking-shadowing function, and 𝐷 (h) ∈ [0,∞) is
the microfacet normal distribution function (NDF). For the Smith microsurface model [1967], the height-correlated

masking-shadowing function [Heitz 2014] is given by

𝐺2 (i, o, h) =
𝐻 (i · h)𝐻 (o · h)
1 + Λ(i) + Λ(o) ,

where

Λ(i) =
∫
S

2
𝐷 (𝛚) max(i · 𝛚, 0)d𝛚

|i · n| − 1 for i · n > 0.

Although microfacet BRDFs are typically used with axis-aligned anisotropy [𝛼𝑥 , 𝛼𝑦], these BRDFs are straightforward
to generalize for non-axis-aligned anisotropy [Heitz 2014]. In this paper, we use non-axis-aligned anisotropic microfacet

BRDFs for NDF filtering.

2.1 Non-axis-aligned GGX NDF

The generalized GGX NDF is defined as

𝐷 (h; A) = 𝜒+ (ℎ𝑧)

𝜋
√︁

det(A)
( [
ℎ𝑥 , ℎ𝑦

]
A−1

[
ℎ𝑥 , ℎ𝑦

]⊤ + ℎ2

𝑧

)
2
,

where A is a 2×2 nonnegative-definite matrix representing the roughness for non-axis-aligned anisotropy. For this

NDF, the masking-shadowing function is obtained using the following function:

Λ(i) =
√
𝑘2 + 1 − 1

2

, where 𝑘 =

√︄[
𝑖𝑥

𝑖𝑧
,
𝑖𝑦

𝑖𝑧

]
A

[
𝑖𝑥

𝑖𝑧
,
𝑖𝑦

𝑖𝑧

]⊤
.

2.2 Non-axis-aligned Beckmann NDF

The generalized Beckmann NDF is defined as

𝐷 (h; A) = 𝜒+ (ℎ𝑧)
𝜋
√︁

det(A)ℎ4

𝑧

exp

(
−

[
ℎ𝑥

ℎ𝑧
,
ℎ𝑦

ℎ𝑧

]
A−1

[
ℎ𝑥

ℎ𝑧
,
ℎ𝑦

ℎ𝑧

]⊤)
.

For this NDF, the masking-shadowing function is obtained using the following function:

Λ(i) = 1

2

(
erf

(
1

𝑘

)
+ 𝑘
√
𝜋

e
−1/𝑘2

− 1

)
.
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For the visible normal distribution function (VNDF) of symmetric microflakes, the normalization factor (i.e., projected

microflake area) is derived by∫
S

2

𝐷 (𝛚; A) |i · 𝛚|d𝛚 =

∫
S

2

𝐷 (𝛚; A) max(i · 𝛚, 0)d𝛚 +
∫

S
2

𝐷 (𝛚; A) max(−i · 𝛚, 0)d𝛚

=

𝑖𝑧erfc

(
− 𝑖𝑧√︃

[𝑖𝑥 ,𝑖𝑦]A[𝑖𝑥 ,𝑖𝑦]⊤

)
+

√︂
[𝑖𝑥 ,𝑖𝑦]A[𝑖𝑥 ,𝑖𝑦]⊤

𝜋 exp

(
− 1

𝑘2

)
2

+

−𝑖𝑧erfc

(
𝑖𝑧√︃

[𝑖𝑥 ,𝑖𝑦]A[𝑖𝑥 ,𝑖𝑦]⊤

)
+

√︂
[𝑖𝑥 ,𝑖𝑦]A[𝑖𝑥 ,𝑖𝑦]⊤

𝜋 exp

(
− 1

𝑘2

)
2

=𝑖𝑧erf

©­­«
𝑖𝑧√︃[

𝑖𝑥 , 𝑖𝑦
]

A
[
𝑖𝑥 , 𝑖𝑦

]⊤ ª®®¬ +
√︄ [

𝑖𝑥 , 𝑖𝑦
]

A
[
𝑖𝑥 , 𝑖𝑦

]⊤
𝜋

exp

(
− 1

𝑘2

)
.

For all other NDF models that have a closed-form Smith Λ(i) function, the normalization factor is derived analytically

in the same manner.

3 Previous Spherical Gaussian Approximations

3.1 Anisotropic Spherical Gaussians

An anisotropic spherical Gaussian (ASG) [Xu et al. 2013] is defined as

𝑔

(
o;

[
`
𝛏𝑥 ,

`
𝛏𝑦,

`
𝛏𝑧

]
,
[
𝜏𝑥 , 𝜏𝑦

] )
= max

(
o · `

𝛏𝑧 , 0

)
exp

(
−𝜏𝑥

(
o · `

𝛏𝑥

)
2

− 𝜏𝑦

(
o · `

𝛏𝑦

)
2

)
,

where
`
𝛏𝑥 ∈ S

2, `
𝛏𝑦 ∈ S

2, `
𝛏𝑧 ∈ S

2
are orthonormal vectors, and 𝜏𝑥 ∈ [0,∞), 𝜏𝑦 ∈ [0,∞) are the sharpness parameters for

`
𝛏𝑥 -axis and

`
𝛏𝑦-axis, respectively. For glossy SG lighting, Xu et al. [2013] first approximated the NDF with an ASG, and

then they warped the ASG lobe to the reflection vectors as follows:

𝑓 (i, o) |o · n| ∝∼ 𝑔

(
o;

[
`
𝛏𝑥 ,

`
𝛏𝑦,

`
𝛏𝑧

]
,
[
𝜏𝑥 , 𝜏𝑦

] )
,

where the lobe axis
`
𝛏𝑧 = 2(i · n)n − i is the perfect specular reflection vector. To obtain

`
𝛏𝑥 ,

`
𝛏𝑦, 𝜏𝑥 , 𝜏𝑦 , they introduced a

spherical warping method for the perfect specular reflection vector 𝛏𝑧 . To convolve the ASG reflection lobe with an

isotropic SG light, they also introduced the following approximation:∫
S

2

𝑔

(
o;

[
`
𝛏𝑥 ,

`
𝛏𝑦,

`
𝛏𝑧

]
,
[
𝜏𝑥 , 𝜏𝑦

] )
𝑔(o; 𝛏, 𝜅)do ∝∼ 𝑔

(
𝛏;

[
`
𝛏𝑥 ,

`
𝛏𝑦,

`
𝛏𝑧

]
,

[
2𝜏𝑥𝜅

2𝜏𝑥 + 𝜅 ,
2𝜏𝑦𝜅

2𝜏𝑦 + 𝜅

] )
.

Since the ASG has the clamped cosine term max(𝛏 · `
𝛏𝑧 , 0), the above approximation produces zero for 𝛏 · `

𝛏𝑧 ≤ 0

(please see Fig. 6a in the main document). In addition, it cannot represent lower-frequency lobes than the cosine (e.g.,

uniform distribution). Thus, the ASG approximation can be inaccurate for low-frequency NDFs and low-frequency light

distributions. Our glossy SG lighting considers such low-frequency distributions as well as high-frequency distributions.
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3.2 Product Integral of an SG and a Clamped Cosine

Meder and Brüderlin [2018] approximated the product integral of an SG and a clamped cosine as follows:∫
S

2

𝑔(o; 𝛏, 𝜅) max(o · n, 0)do ≈ 𝑎

∫
S

2

𝐻 (o · n)𝑔(o; 𝛏, 𝜅)𝑔(o; n, 𝜖)do − 𝑏

∫
S

2

𝐻 (o · n)𝑔(o; 𝛏, 𝜅)do, (1)

where Meder and Brüderlin [2018] obtained constant parameters 𝑎 = 32.708, 𝑏 = 31.703, and 𝜖 = 0.0315 by non-linear

fitting. However, these constants were not optimal in practice. Tokuyoshi [2022] derived 𝑎 = 𝑏e
𝜖
,𝑏 = 𝜖/(2e

𝜖−2−2𝜖), and
𝜖 → 0. For single-precision floating-point arithmetic, he also derived a near-optimal value 𝜖 = 0.00084560872241480124

by analyzing the numerical error bound.

The hemispherical integral of an SG is computed using the following interpolation:∫
S

2

𝐻 (o · n)𝑔(o; 𝛏, 𝜅)do = 𝐶 (𝜅)𝑣 +𝐶 (𝜅) (1 − 𝑣), (2)

where 𝑣 ∈ [0, 1] is the interpolation factor, and

𝐶 (𝜅) =
∫

S
2

𝐻 (o · n)𝑔(o; n, 𝜅)do = 2𝜋
1 − e

−𝜅

𝜅
,

𝐶 (𝜅) =
∫

S
2

𝐻 (o · n)𝑔(o;−n, 𝜅)do = 2𝜋e
−𝜅 1 − e

−𝜅

𝜅
.

For the interpolation factor 𝑣 , Meder and Brüderlin [2018] empirically approximated it with a normalized logistic

function:

𝑣 ≈ e
𝑡logistic (𝜅 )

e
𝑡logistic (𝜅 ) (𝛏·n) − 1(

e
𝑡logistic (𝜅 ) − 1

) (
e
𝑡logistic (𝜅 ) (𝛏·n) + 1

) , where 𝑡
logistic

≈
√
𝜅

1.6988𝜅2 + 10.8438𝜅

𝜅2 + 6.2201𝜅 + 10.2415

.

Wang et al. [2009] also used a logistic function for their SSDF-based visibility. Tokuyoshi [2022] improved the quality

by using the error function as follows:

𝑣 ≈ 1

2

+ erf (𝑡
erf

(𝜅) (𝛏 · n))
2erf (𝑡

erf
(𝜅)) , where 𝑡

erf
(𝜅) ≈ 𝜅

√︂
0.5𝜅 + 0.65173288269070562

𝜅2 + 1.3418280033141288𝜅 + 7.2216687798956709

. (3)

Eq. 1 requires an SG product and two interpolations to approximate the hemispherical integrals. In addition, the

difference of approximated hemispherical integrals can induce a negative value. Our method uses only one interpolation,

which is more accurate and guarantees positive results.

4 Numerically Stable Implementations for Spherical Gaussian Operators

Numerically stable implementations of SG operators are available as open source [Tokuyoshi 2024]. In this section, we

show the implementation details for these existing SG operators.

4.1 SG Integral

The integral of an SG is given by the following equation:∫
S

2

𝑔(o; 𝛏, 𝜅)do = 2𝜋
1 − e

−2𝜅

𝜅
= 4𝜋expm1_over_x(−2𝜅), (4)

where expm1_over_x(𝑥) = (e𝑥 − 1)/𝑥 . A straightforward implementation of this integral can produce a large numerical

error due to floating-point arithmetic (i.e., catastrophic cancellation) if the sharpness 𝜅 is small. Therefore, we use a

numerically stable algorithm [Higham 2002] for expm1_over_x(𝑥) shown in Listing 1.
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Listing 1. expm1_over_x(𝑥 ) = (e𝑥 − 1)/𝑥 with cancellation of rounding errors [Higham 2002] (HLSL).

float expm1_over_x(float x) {

float u = exp(x);

if (u == 1.0) {

return 1.0;

}

float y = u - 1.0;

if (abs(x) < 1.0) {

return y / log(u);

}

return y / x;

}

4.2 SG Product

The product of two SGs is given by

𝑔(𝛚; 𝛏
1
, 𝜅1)𝑔(𝛚; 𝛏

2
, 𝜅2) = e

𝜅3−𝜅1−𝜅2𝑔

(
𝛚;

𝜅1𝛏1
+ 𝜅2𝛏2

𝜅3

, 𝜅3

)
,

where 𝜅3 = ∥𝜅1𝛏1
+ 𝜅2𝛏2

∥. However, if the sharpness 𝜅1 or 𝜅2 is large, 𝜅3 − 𝜅1 − 𝜅2 can cause catastrophic cancellation.

To improve the numerical stability for large 𝜅1 or 𝜅2, we use the following form:

𝜅3 − 𝜅1 − 𝜅2 =
2𝜅min ((𝛏1

· 𝛏
2
) − 1)

1 + 𝜅min

𝜅max

+
√︂

2
𝜅min

𝜅max

(𝛏
1
· 𝛏

2
) +

(
𝜅min

𝜅max

)
2

+ 1

,

where 𝜅min = min(𝜅1, 𝜅2) and 𝜅max = max(𝜅1, 𝜅2). The HLSL code for this SG product is shown in Listing 2.

Listing 2. Numerically stable SG product (HLSL).

struct SGLobe {

float3 axis;

float sharpness;

float logAmplitude;

};

SGLobe sg_product(float3 axis1 , float sharpness1 , float3 axis2 , float sharpness2) {

float3 axis = axis1 * sharpness1 + axis2 * sharpness2;

float sharpness = length(axis);

float cosine = clamp(dot(axis1 , axis2), -1.0, 1.0);

float sharpnessMin = min(sharpness1 , sharpness2);

float sharpnessRatio = sharpnessMin / max(sharpness1 , sharpness2);

float logAmplitude = 2.0 * sharpnessMin * (cosine - 1.0) / (1.0 + sharpnessRatio + sqrt (2.0 * sharpnessRatio * cosine

+ sharpnessRatio * sharpnessRatio + 1.0));

SGLobe result = { axis / max(sharpness , FLT_MIN), sharpness , logAmplitude };

return result;

}
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4.3 Hemispherical Integral of an SG

The hemispherical integral of an SG is given by Eq. 2. To improve the numerical stability, we use expm1_over_x(−𝜅)
for 𝐶 (𝜅) and 𝐶 (𝜅) as follows:

𝐶 (𝜅) =
∫

S
2

𝐻 (o · n)𝑔(o; n, 𝜅)do = 2𝜋
1 − e

−𝜅

𝜅
= 2𝜋expm1_over_x(−𝜅),

𝐶 (𝜅) =
∫

S
2

𝐻 (o · n)𝑔(o;−n, 𝜅)do = 2𝜋e
−𝜅 1 − e

−𝜅

𝜅
= 2𝜋e

−𝜅
expm1_over_x(−𝜅).

Since 𝐶 (𝜅) > 0 and 𝐶 (𝜅) > 0, this interpolation does not yield zero. Listing 3 shows an HLSL implementation using the

interpolation factor 𝑣 derived by Tokuyoshi [2022] (Eq. 3).

Listing 3. Numerically stable hemispherical integral of an SG (HLSL).

float sg_hemispherical_integral(float cosine , float sharpness) {

// Interpolation factor [Tokuyoshi 2022].

float steepness = sharpness * sqrt ((0.5 * sharpness + 0.65173288269070562) / (( sharpness + 1.3418280033141288) *

sharpness + 7.2216687798956709));

float v = saturate (0.5 + 0.5 * (erf(steepness * clamp(cosine , -1.0, 1.0)) / erf(steepness)));

// Interpolation between upper and lower hemispherical integrals.

return 2.0 * M_PI * lerp(exp(-sharpness), 1.0, v) * expm1_over_x(-sharpness);

}

4.4 Hemispherical Integral of a Normalized SG

The hemispherical integral of a normalized SG (a.k.a., vMF) is obtained from Eq. 4 and Eq. 2 as follows:∫
S

2
𝐻 (o · n)𝑔(o; 𝛏, 𝜅)do∫

S
2
𝑔(o; 𝛏, 𝜅)do

=
𝑣 + e

−𝜅 (1 − 𝑣)
e
−𝜅 + 1

.

Listing 4 shows an HLSL implementation for this hemispherical integral. In this paper, we use this implementation for

the visibility term 𝑉 in our glossy SG lighting approximation.

Listing 4. Numerically stable hemispherical integral of a normalized SG (HLSL).

float vmf_hemispherical_integral(float cosine , float sharpness) {

// Interpolation factor [Tokuyoshi 2022].

float steepness = sharpness * sqrt ((0.5 * sharpness + 0.65173288269070562) / (( sharpness + 1.3418280033141288) *

sharpness + 7.2216687798956709));

float v = saturate (0.5 + 0.5 * (erf(steepness * clamp(cosine , -1.0, 1.0)) / erf(steepness)));

// Interpolation between upper and lower hemispherical integrals.

float e = exp(-sharpness);

return lerp(e, 1.0, v) / (e + 1.0);

}

5 Numerically Stable Implementation for Our SG Lighting

5.1 Diffuse SG Lighting

For our diffuse SG lighting, we interpolate the following two product integrals of an SG and a clamped cosine:

𝐵̂(𝜅) =
∫

S
2

𝑔(o; n, 𝜅) max(o · n, 0)do =
2𝜋 (e−𝜅 − 1 + 𝜅)

𝜅2
,

𝐵̌(𝜅) =
∫

S
2

𝑔(o;−n, 𝜅) max(o · n, 0)do =
2𝜋e

−𝜅 (1 − e
−𝜅 − 𝜅e

−𝜅 )
𝜅2

.
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To compute these integrals in a numerically stable manner, we use Listings 5 and 6. In these codes, we use polynomial

approximations using the Taylor series to reduce a numerical error due to catastrophic cancellation for a small SG

sharpness 𝜅. A faster approximation is a future work. Listing 7 shows the code for the product integral of an arbitrary

SG and the clamped cosine used for our diffuse SG lighting.

Listing 5. Numerically stable implementation for 𝐵̂ (𝜅 )/(2𝜋 ) (HLSL).
float upper_sg_clamped_cosine_integral_over_two_pi(float sharpness) {

if (sharpness <= 0.5) {

// Taylor -series approximation for numerical stability.

return ((((((( -1.0 / 362880.0) * sharpness + 1.0 / 40320.0) * sharpness - 1.0 / 5040.0) * sharpness + 1.0 / 720.0) *

sharpness - 1.0 / 120.0) * sharpness + 1.0 / 24.0) * sharpness - 1.0 / 6.0) * sharpness + 0.5;

}

return (expm1(-sharpness) + sharpness) / (sharpness * sharpness);

}

Listing 6. Numerically stable implementation for 𝐵̌ (𝜅 )/(2𝜋 ) (HLSL).
float lower_sg_clamped_cosine_integral_over_two_pi(float sharpness) {

float e = exp(-sharpness);

if (sharpness <= 0.5) {

// Taylor -series approximation for numerical stability.

return e * (((((((((1.0 / 403200.0) * sharpness - 1.0 / 45360.0) * sharpness + 1.0 / 5760.0) * sharpness - 1.0 /

840.0) * sharpness + 1.0 / 144.0) * sharpness - 1.0 / 30.0) * sharpness + 1.0 / 8.0) * sharpness - 1.0 / 3.0) *

sharpness + 0.5);

}

return e * (-expm1(-sharpness) - sharpness * e) / (sharpness * sharpness);

}

Listing 7. Numerically stable implementation for the product integral of an arbitrary SG and a clamped cosine over 𝜋 (HLSL).

float sg_clamped_cosine_integral_over_pi(float z, float sharpness) { // z = dot(sg_axis , n).

// Fitted approximation for t(sharpness).

float A = 2.7360831611272558028247203765204;

float B = 17.02129778174187535455530451145;

float C = 4.0100826728510421403939290030394;

float D = 15.219156263147210594866010069381;

float E = 76.087896272360737270901154261082;

float t = sharpness * sqrt (0.5 * (( sharpness + A) * sharpness + B) / ((( sharpness + C) * sharpness + D) * sharpness +

E));

float tz = t * z;

float INV_SQRTPI = 0.56418958354775628694807945156077;

float lerpFactor = saturate (0.5 * (z * erfc(-tz) + erfc(t)) - 0.5 * INV_SQRTPI * exp(-tz * tz) * expm1(t * t * (z * z

- 1.0)) / t);

// Interpolation between upper and lower hemispherical integrals.

float lowerIntegral = lower_sg_clamped_cosine_integral_over_two_pi(sharpness);

float upperIntegral = upper_sg_clamped_cosine_integral_over_two_pi(sharpness);

return 2.0 * lerp(lowerIntegral , upperIntegral , lerpFactor);

}

5.2 Roughness Conversion for NDF Filtering

In NDF filtering, we convert the filtered covariance matrix Σ̄𝐷 to the roughness matrix Ā using the following equation:

Ā ≈
(
(2Σ̄𝐷 )−1 + E

)−1

. (5)
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To obtain (2Σ̄𝐷 )−1
, we have to compute det(2Σ̄𝐷 ) in a numerically stable manner. This determinant must be positive.

However, a straightforward implementation can produce a negative value due to catastrophic cancellation, especially at

grazing angles. Therefore, we use the following equation:

det

(
2Σ̄𝐷

)
≈ det

(
2Σ𝐷 + 2

𝜅
JJ⊤

)
=

(
𝛽𝑥 + 2

𝜅
𝛾11

) (
𝛽𝑦 + 2

𝜅
𝛾22

)
− 4

𝜅2
𝛾12𝛾21

= 𝛽𝑥 𝛽𝑦 + 2

𝜅
(𝛽𝑥𝛾11 + 𝛽𝑦𝛾22) +

4

𝜅2
det

(
JJ⊤

)
,

where 𝛾11 ∈ [0,∞) and 𝛾22 ∈ [0,∞) are diagonal components of JJ⊤ =

[
𝛾11 𝛾12

𝛾21 𝛾22

]
, and 𝛽𝑥 ∈ (0,∞] and 𝛽𝑦 ∈ (0,∞]

are diagonal components of 2Σ𝐷 as follows:

2Σ𝐷 =

[
𝛽𝑥 0

0 𝛽𝑦

]
≈

(
A−1 − E

)−1

=


𝛼2

𝑥

1−𝛼2

𝑥
0

0

𝛼2

𝑦

1−𝛼2

𝑦

 .
The determinant of JJ⊤ is given by

det

(
JJ⊤

)
=


(h·n)2

16(i·h)2
for reflection

𝜂4 (o·h)2 (h·n)2

( (i·h)+𝜂 (o·h) )4
for refraction

.

This form yields a positive value in floating points, unlike a straightforward calculation: det

(
JJ⊤

)
= 𝛾11𝛾22 − 𝛾12𝛾21

that induces catastrophic cancellation. Using this form, we also avoid catastrophic cancellation in Eq. 5 as follows:

Ā ≈
(
(2Σ̄𝐷 )−1 + E

)−1

=
adj

(
(2Σ̄𝐷 )−1 + E

)
det

(
(2Σ̄𝐷 )−1 + E

) =
2Σ̄𝐷 + det

(
2Σ̄𝐷

)
E

1 + tr(2Σ̄𝐷 ) + det

(
2Σ̄𝐷

) .

We use the above equation in our implementation.

6 Conservative Spatial Variance for Outliers

Although our SG light tree can represent an all-frequency distribution of lights within a cluster in each node, it is a

single lobe. Thus, it may underestimate outlier lights in the cluster when most lights are dense and a few are distant

from the cluster center. Such outliers are insignificant for the importance approximation if the cluster center is visible

to a shading point and most lights are considered. However, if the cluster center is invisible (i.e., below the surface)

and only a few outlier lights are visible (i.e., above the surface) as shown in Fig. 1, Gaussian approximation may

induce firefly noise (Fig. 2a) due to the underestimation of the outliers. Therefore, to conservatively approximate the

importance of such outlier lights, we overstate the spatial variance 𝜎2
by using a bounding sphere of the cluster. By

assuming that lights are uniformly distributed on a plane, we can obtain 𝜎2 = 0.5𝑟2
using the bounding sphere radius

𝑟 ∈ [0,∞). However, this can increase noise due to the false assumption in most cases (Fig. 2b). Therefore, we blend

this bound-based spatial variance 0.5𝑟2
and the original spatial variance 𝜎2

𝑠 based on the angle of the cluster center 𝛍

viewed from the shading point x as follows:

𝜎2 = 𝜎2

𝑠 (1 − 𝑐) + 0.5𝑟2𝑐, (6)

where 𝑐 = max(n · (x − 𝛍)/∥x − 𝛍∥, 0). With this hybrid approach, we reduce noise for visible outliers (Fig. 2c).
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(a) Outlier light above the surface (b) Bounding sphere

Fig. 1. Outliers in Gaussian-based light cluster representation. (a) When only a few outlier lights are visible, the Gaussian-based

representation can underestimate the contribution of the outlier lights. (b) To mitigate this underestimation error, we use a conservative

spatial variance based on the bounding sphere when the cluster center is below the surface and invisible.

(a) Original

(RMSPE: 41.4%)

(b) Bound-based

(RMSPE: 42.2%)

(c) Hybrid

(RMSPE: 39.6%)

(d) Reference

Fig. 2. Closeups of the Bistro scene (64 spp) rendered using our method with different spatial variances for light clusters. (a) Original

spatial variance can induce noise for outlier lights in a cluster (upper row). (b) Bound-based variance is conservative for outliers, while

slightly increasing noise in most cases (lower row). (c) Our hybrid approach (Eq. 6) is robust for both cases. For full-size images, please

refer to the supplementary images.
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7 Real-time Demo for Our SG Lighting Visualization

To visualize our SG lighting method, we implemented our SG lighting approximation on top of an existing open-source

virtual SG light demo [Tokuyoshi 2024]. As shown in this visualization demo (Fig. 3), our glossy SG lighting takes into

account elongated highlights (i.e., anisotropic reflection lobes) created by microfacet BRDFs at grazing angles. We have

attached the source code of this visualization demo in the supplementary code. For details, please refer to our example

HLSL implementation in the source code.

Fig. 3. Visualization of our SG lighting approximation. Unlike isotropic reflection lobe approximations (e.g., using SPTDs [Dupuy

et al. 2017; Liu et al. 2019] or isotropic SGs [Wang et al. 2009]), our glossy SG lighting takes into account elongated highlights created

by microfacet BRDFs at grazing angles.
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8 Additional Experimental Results

Here we show additional experimental results rendered on an AMD Radeon™ RX 7900 XTX GPU. For all the methods,

we build light trees using a high-quality sweep surface area orientation heuristic (SAOH) [Conty and Kulla 2018] in

preprocessing on an AMD Ryzen™ 9 7950X CPU without performance optimization. For this naïve CPU implementation,

the SAOH construction times are 25.1 ms for the Hangarship scene, 92.5 ms for the Museum scene, 1145.2 ms for the

Toyshop scene, and 121.431 ms for the Bistro scene. Improving the SAOH construction time is beyond the scope of

this paper.

8.1 Glossy Scenes

Fig. 4 shows plots of root mean square percentage error (RMSPE) and mean absolute percentage error (MAPE) for

additional glossy scenes. For these scenes, our method is more efficient than previous methods.

Opera House (2.51 M triangles, 36,986 triangle lights) Sci-Fi (4.81 M triangles, 30,538 triangle lights)

R
M
S
P
E

2%

200%

1 s 1000 s
2%

200%

1 s 1000 s

CK2018

CK2018+LY2020

LXY2019

Ours

M
A
P
E

1%

100%

1 s 1000 s
1%

100%

1 s 1000 s

Fig. 4. Path tracing using one light sample per tree-traversal query for glossy scenes (3840×2160 pixels, AMD Radeon™ RX 7900 XTX

GPU). For these glossy scenes, our method improves the error convergence speed in the RMSPE and MAPE metrics.
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8.2 Performance of the Sampling Routines

Table 1 shows the computation times of the sampling routines evaluated by separating the compute kernel. By separating

the kernel, our computational overhead is reduced compared to Table 3 in the main document. This is because kernel

separation reduces the register pressure on the GPU. Thus, our method can be efficient for GPU rendering algorithms

that use multiple kernels [Laine et al. 2013].

Table 1. Computation times of light sampling routines for direct illumination (3840×2160 pixels, 1 spp)

CK2018 CK2018+LY2020 LXY2019 Ours

Hangarship 7.3 ms 8.1 ms 40.4 ms 11.3 ms

Museum 9.4 ms 9.1 ms 46.2 ms 13.9 ms

Toyshop 10.5 ms 11.7 ms 53.9 ms 16.0 ms

Bistro 8.6 ms 9.1 ms 47.6 ms 14.5 ms

8.3 Denoising

Fig. 5 shows path tracing using Intel
®
Open Image Denoise (OIDN) [Áfra 2024] in post-processing. As shown in Fig. 10

in the main document, the previous methods can produce abrupt changes in the amount of noise between pixels.

Denoisers such as OIDN can produce visual artifacts for such noise changes, even if input images are unbiased. Our

method mitigates the visual artifacts by reducing the abrupt noise changes as well as the noise. To evaluate the quality

of denoised images, we use the symmetric mean absolute percentage error (SMAPE) metric in addition to the RMSPE

and MAPE metrics. This is because, unlike unbiased rendering, denoisers introduce a brightening bias in dark pixels by

blurring pixels. RMSPE and MAPE are sensitive to this brightening bias, while SMAPE is not. For all of these metrics,

our method produces smaller errors than the previous methods.

CK2018 CK2018+LY2020 LXY2019 Ours Reference

Hangarship (1.23 M triangles, 4,775 triangle lights) RMSPE: 89.6% RMSPE: 86.8% RMSPE: 227.1% RMSPE: 77.5%

MAPE: 12.3% MAPE: 12.2% MAPE: 15.6% MAPE: 10.8%

SMAPE: 5.29% SMAPE: 5.24% SMAPE: 6.36% SMAPE: 4.69%

(103 spp) (100 spp) (47 spp) (84 spp)

Fig. 5. Denoised images using Intel
®
Open Image Denoise [Áfra 2024] for path tracing (10 s). The number of path samples per pixel

(spp) is the same as Fig. 10 of the main document. Our method not only reduces error, but also reduces visual artifacts (shown in

orange boxed closeups) caused by abrupt changes in the amount of noise between pixels.

8.4 Adaptive Tree Splitting on the GPU

Fig. 6 shows the rendering results using adaptive tree splitting [Conty and Kulla 2018] on the GPU. For full-size

images, please refer to the supplementary images. In this experiment, we use the same splitting threshold as Conty and
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CK2018 CK2018+LY2020 LXY2019 Ours Reference

Hangarship RMSPE: 28.1%, MAPE: 41.9% RMSPE: 28.0%, MAPE: 41.6% RMSPE: 41.6%, MAPE: 46.0% RMSPE: 32.8%, MAPE: 41.0%

(17 spp) (17 spp) (6 spp) (10 spp)

Museum RMSPE: 50.5%, MAPE: 30.2% RMSPE: 50.6%, MAPE: 30.2% RMSPE: 71.3%, MAPE: 37.7% RMSPE: 54.6%, MAPE: 32.8%

(12 spp) (12 spp) (4 spp) (7 spp)

Toyshop RMSPE: 42.6%, MAPE: 53.5% RMSPE: 42.6%, MAPE: 53.5% RMSPE: 61.5%, MAPE: 64.3% RMSPE: 46.3%, MAPE: 52.9%

(19 spp) (19 spp) (6 spp) (12 spp)

Bistro RMSPE: 26.0%, MAPE: 21.7% RMSPE: 25.9%, MAPE: 21.6% RMSPE: 38.9%, MAPE: 27.0% RMSPE: 31.9%, MAPE: 23.6%

(17 spp) (17 spp) (6 spp) (10 spp)

Fig. 6. Equal-time (10 s) comparison of our method and previous methods with adaptive tree splitting on the GPU. Although adaptive

tree splitting reduces the effectiveness of our method for glossy surfaces, our method can still reduce the variance for glossy highlights.

On the other hand, adaptive tree splitting degrades the performance on the GPU and thus reduces the sampling efficiency. Compared

to Fig. 1 and Fig. 10 in the main document, adaptive tree splitting reduces the MAPEs for a diffuse scene (Bistro), while it increases

the MAPEs for glossy scenes (Hangarship and Toyshop). The increase in RMSPE is due to firefly noise caused by decreasing indirect

illumination path samples.

Kulla [2018]. Unlike the previous CPU implementation, which used an unbounded light list, we limit the light list size to

32 and use reservoir sampling [Vitter 1985] to perform adaptive tree splitting on the GPU. A more sophisticated adaptive

tree splitting method that uses two-pass reservoir resampling [Conty et al. 2024] (published after our submission)

is a future work. Compared to Fig. 1 and Fig. 10 in the main document, naïve adaptive tree splitting degrades the

sampling efficiency on the GPU for glossy scenes. This is because, unlike the CPU implementation, adaptive tree

splitting introduces code path divergence on the GPU and increases register pressure or memory overhead due to the

light list and a stack for tree traversal. In addition, the splitting method ignores BSDFs and produces abrupt changes in

the amount of noise. Adaptive tree splitting prevents our importance from being used in the upper levels of the light

tree. Thus, it reduces the effectiveness of our method. Although our method can still reduce the variance for glossy

highlights, the performance is degraded due to the increase in register pressure. To mitigate these problems, we should

use error bounds that account for glossy BSDFs [Huo et al. 2020; Nabata et al. 2016], and reduce the register pressure

(e.g., by separating the compute kernel). In our experimental results, our method without adaptive tree splitting is the

most efficient on the GPU for glossy scenes.
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